Unknown

Dataset Information

0

Long-term in vivo glucose monitoring using fluorescent hydrogel fibers.


ABSTRACT: The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence-based sensors cannot remain at an implantation site and respond to blood glucose concentrations over an extended period. Here, we present a long-term in vivo glucose monitoring method using glucose-responsive fluorescent hydrogel fibers. We fabricated glucose-responsive fluorescent hydrogels in a fibrous structure because this structure enables the sensors to remain at the implantation site for a long period. Moreover, these fibers allow easy control of the amount of fluorescent sensors implanted, simply by cutting the fibers to the desired length, and facilitate sensor removal from the implantation site after use. We found that the polyethylene glycol (PEG)-bonded polyacrylamide (PAM) hydrogel fibers reduced inflammation compared with PAM hydrogel fibers, transdermally glowed, and continuously responded to blood glucose concentration changes for up to 140 days, showing their potential application for long-term in vivo continuous glucose monitoring.

SUBMITTER: Heo YJ 

PROVIDER: S-EPMC3158145 | biostudies-literature | 2011 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Long-term in vivo glucose monitoring using fluorescent hydrogel fibers.

Heo Yun Jung YJ   Shibata Hideaki H   Okitsu Teru T   Kawanishi Tetsuro T   Takeuchi Shoji S  

Proceedings of the National Academy of Sciences of the United States of America 20110801 33


The use of fluorescence-based sensors holds great promise for continuous glucose monitoring (CGM) in vivo, allowing wireless transdermal transmission and long-lasting functionality in vivo. The ability to monitor glucose concentrations in vivo over the long term enables the sensors to be implanted and replaced less often, thereby bringing CGM closer to practical implementation. However, the full potential of long-term in vivo glucose monitoring has yet to be realized because current fluorescence  ...[more]

Similar Datasets

| S-EPMC9982560 | biostudies-literature
| S-EPMC2964191 | biostudies-literature
| S-EPMC9636246 | biostudies-literature
| S-EPMC6468940 | biostudies-literature
| S-EPMC10614860 | biostudies-literature
| S-EPMC4647837 | biostudies-other
| S-EPMC5921932 | biostudies-literature
| S-EPMC7306611 | biostudies-literature
| S-EPMC5561509 | biostudies-other
| S-EPMC3876332 | biostudies-literature