Unknown

Dataset Information

0

QM/MM metadynamics study of the direct decarboxylation mechanism for orotidine-5'-monophosphate decarboxylase using two different QM regions: acceleration too small to explain rate of enzyme catalysis.


ABSTRACT: Despite decades of study, the mechanism by which orotidine-5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine monophosphate remains unresolved. A computational investigation of the direct decarboxylation mechanism has been performed using mixed quantum mechanical/molecular mechanical (QM/MM) dynamics simulations. The study was performed with the program CP2K that integrates classical dynamics and ab initio dynamics based on the Born-Oppenheimer approach. Two different QM regions were explored. The free energy barriers for direct decarboxylation of orotidine-5'-monophosphate (OMP) in solution and in the enzyme (using the larger QM region) were determined with the metadynamics method to be 40 and 33 kcal/mol, respectively. The calculated change in activation free energy (DeltaDeltaG++) on going from solution to the enzyme is therefore -7 kcal/mol, far less than the experimental change of -23 kcal/ mol (for k(cat.)/k(uncat.): Radzicka, A.; Wolfenden, R., Science 1995, 267, 90-92). These results do not support the direct decarboxylation mechanism that has been proposed for the enzyme. However, in the context of QM/MM calculations, it was found that the size of the QM region has a dramatic effect on the calculated reaction barrier.

SUBMITTER: Stanton CL 

PROVIDER: S-EPMC3163499 | biostudies-literature | 2007 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

QM/MM metadynamics study of the direct decarboxylation mechanism for orotidine-5'-monophosphate decarboxylase using two different QM regions: acceleration too small to explain rate of enzyme catalysis.

Stanton Courtney L CL   Kuo I-Feng W IF   Mundy Christopher J CJ   Laino Teodoro T   Houk K N KN  

The journal of physical chemistry. B 20071010 43


Despite decades of study, the mechanism by which orotidine-5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine monophosphate remains unresolved. A computational investigation of the direct decarboxylation mechanism has been performed using mixed quantum mechanical/molecular mechanical (QM/MM) dynamics simulations. The study was performed with the program CP2K that integrates classical dynamics and ab initio dynamics based on the Born-Oppenheimer approach. Two diffe  ...[more]

Similar Datasets

| S-EPMC3651880 | biostudies-literature
| S-EPMC8650221 | biostudies-literature
| S-EPMC3949427 | biostudies-literature
| S-EPMC6016548 | biostudies-literature
| S-EPMC10052792 | biostudies-literature
| S-EPMC15746 | biostudies-literature
| S-EPMC6317530 | biostudies-literature
| S-EPMC4520626 | biostudies-literature
| S-EPMC3267953 | biostudies-literature
| S-EPMC15744 | biostudies-literature