Peptide inhibitors of the malaria surface protein, apical membrane antigen 1: identification of key binding residues.
Ontology highlight
ABSTRACT: Apical membrane antigen 1 (AMA1) is essential for malaria parasite invasion of erythrocytes and is therefore an attractive target for drug development. Peptides that bind AMA1 have been identified from random peptide libraries expressed on the surface of phage. Of these, R1, which binds to a hydrophobic ligand binding site on AMA1, was a particularly potent inhibitor of parasite invasion of erythrocytes in vitro. The solution structure of R1 contains a turn-like conformation between residues 5-10. Here the importance of residues in this turn-like structure for binding to AMA1 was examined by site-directed mutagenesis and NMR spectroscopy. The peptide was expressed as a fusion protein following replacement of Met16 by Leu in order to accommodate cyanogen bromide cleavage. This modified peptide (R2) displayed the same affinity for AMA1 as R1, showing that the identity of the side chain at position 16 was not critical for binding. Substitution of Phe5, Pro7, Leu8, and Phe9 with alanine led to significant (7.5- to >350-fold) decreases in affinity for AMA1. Comparison of backbone amide and C(?) H chemical shifts for these R2 analogues with corresponding values for R2 showed no significant changes, with the exception of R2(P7A), where slightly larger differences were observed, particularly for residues flanking position 7. The absence of significant changes in the secondary chemical shifts suggests that these mutations had little effect on the solution conformation of R2. The identification of a nonpolar region of these peptides containing residues essential for AMA1 binding establishes a basis for the design of anti-malarial drugs based on R1 mimetics.
SUBMITTER: Lee EF
PROVIDER: S-EPMC3164155 | biostudies-literature | 2011 May
REPOSITORIES: biostudies-literature
ACCESS DATA