Unknown

Dataset Information

0

Functionally redundant cellobiose-degrading soil bacteria respond differentially to oxygen.


ABSTRACT: The availability of oxygen (O(2)) in aerated (i.e., water-unsaturated) soils affects the metabolic activities of aerobic and anaerobic soil prokaryotes that degrade plant-derived saccharides. Fluctuating availabilities of O(2) were imposed on agricultural soil slurries supplemented with cellobiose. Slurries were subjected to oxic conditions (48 h), followed by an anoxic period (120 h) and a final oxic period (24 h). Redox potential was stable at 500 mV during oxic periods but decreased rapidly (within 10 h) under anoxic conditions to -330 mV. The consumption of cellobiose occurred without apparent delay at all redox potentials. The metabolic activities of seven previously identified saccharolytic family-level taxa of the investigated soil were measured with newly designed quantitative PCR assays targeting the 16S rRNA. Four taxa responded to the experimental conditions. The amounts of rRNAs of Micrococcaceae and Cellulomonadaceae (Actinobacteria) increased under oxic conditions. In contrast, the RNA contents of Clostridiaceae (cluster I, Firmicutes) and two uncultured family-level-taxa, i.e., "Cellu" and "Sphingo" (both Bacteroidetes) increased under anoxic conditions. That the degradation of cellobiose was independent of the availability of O(2) and that redox potentials decreased in response to anaerobic activities indicated that the degradation of cellobiose was linked to functionally redundant cellobiose-degrading taxa capable of altering redox conditions.

SUBMITTER: Schellenberger S 

PROVIDER: S-EPMC3165369 | biostudies-literature | 2011 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functionally redundant cellobiose-degrading soil bacteria respond differentially to oxygen.

Schellenberger Stefanie S   Drake Harold L HL   Kolb Steffen S  

Applied and environmental microbiology 20110708 17


The availability of oxygen (O(2)) in aerated (i.e., water-unsaturated) soils affects the metabolic activities of aerobic and anaerobic soil prokaryotes that degrade plant-derived saccharides. Fluctuating availabilities of O(2) were imposed on agricultural soil slurries supplemented with cellobiose. Slurries were subjected to oxic conditions (48 h), followed by an anoxic period (120 h) and a final oxic period (24 h). Redox potential was stable at 500 mV during oxic periods but decreased rapidly (  ...[more]

Similar Datasets

| S-EPMC10811730 | biostudies-literature
| S-EPMC3497156 | biostudies-literature
| S-EPMC7910268 | biostudies-literature
| S-EPMC106205 | biostudies-literature
| S-EPMC4421061 | biostudies-literature
| S-EPMC10450921 | biostudies-literature
| S-EPMC5628307 | biostudies-literature
| S-EPMC106659 | biostudies-literature
| PRJEB52251 | ENA
| S-EPMC4611497 | biostudies-literature