Unknown

Dataset Information

0

Evolutionary genetics of an S-like polymorphism in Papaveraceae with putative function in self-incompatibility.


ABSTRACT: BACKGROUND:Papaver rhoeas possesses a gametophytic self-incompatibility (SI) system not homologous to any other SI mechanism characterized at the molecular level. Four previously published full length stigmatic S-alleles from the genus Papaver exhibited remarkable sequence divergence, but these studies failed to amplify additional S-alleles despite crossing evidence for more than 60 S-alleles in Papaver rhoeas alone. METHODOLOGY/PRINCIPAL FINDINGS:Using RT-PCR we identified 87 unique putative stigmatic S-allele sequences from the Papaveraceae Argemone munita, Papaver mcconnellii, P. nudicuale, Platystemon californicus and Romneya coulteri. Hand pollinations among two full-sib families of both A. munita and P. californicus indicate a strong correlation between the putative S-genotype and observed incompatibility phenotype. However, we also found more than two S-like sequences in some individuals of A. munita and P. californicus, with two products co-segregating in both full-sib families of P. californicus. Pairwise sequence divergence estimates within and among taxa show Papaver stigmatic S-alleles to be the most variable with lower divergence among putative S-alleles from other Papaveraceae. Genealogical analysis indicates little shared ancestral polymorphism among S-like sequences from different genera. Lack of shared ancestral polymorphism could be due to long divergence times among genera studied, reduced levels of balancing selection if some or all S-like sequences do not function in incompatibility, population bottlenecks, or different levels of recombination among taxa. Preliminary estimates of positive selection find many sites under selective constraint with a few undergoing positive selection, suggesting that self-recognition may depend on amino acid substitutions at only a few sites. CONCLUSIONS/SIGNIFICANCE:Because of the strong correlation between genotype and SI phenotype, sequences reported here represent either functional stylar S-alleles, tightly linked paralogs of the S-locus or a combination of both. The considerable complexity revealed in this study shows we have much to learn about the evolutionary dynamics of self-incompatibility systems.

SUBMITTER: Paape T 

PROVIDER: S-EPMC3166141 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evolutionary genetics of an S-like polymorphism in Papaveraceae with putative function in self-incompatibility.

Paape Timothy T   Miyake Takashi T   Takebayashi Naoki N   Wolf Diana D   Kohn Joshua R JR  

PloS one 20110831 8


<h4>Background</h4>Papaver rhoeas possesses a gametophytic self-incompatibility (SI) system not homologous to any other SI mechanism characterized at the molecular level. Four previously published full length stigmatic S-alleles from the genus Papaver exhibited remarkable sequence divergence, but these studies failed to amplify additional S-alleles despite crossing evidence for more than 60 S-alleles in Papaver rhoeas alone.<h4>Methodology/principal findings</h4>Using RT-PCR we identified 87 uni  ...[more]

Similar Datasets

| S-EPMC60842 | biostudies-literature
| S-EPMC5793819 | biostudies-literature
| S-EPMC3120821 | biostudies-literature
| S-EPMC4940477 | biostudies-literature
| S-EPMC5850868 | biostudies-literature
| S-EPMC6028250 | biostudies-other
| S-EPMC1456519 | biostudies-literature
| S-EPMC5680433 | biostudies-literature
| S-EPMC2651069 | biostudies-literature
| S-EPMC2909234 | biostudies-literature