Ontology highlight
ABSTRACT: Background
Frontline treatment of small cell lung carcinoma (SCLC) relies heavily on chemotherapeutic agents and radiation therapy. Though SCLC patients respond well to initial cycles of chemotherapy, they eventually develop resistance. Identification of novel therapies against SCLC is therefore imperative.Methods and findings
We have designed a bioluminescence-based cell viability assay for high-throughput screening of anti-SCLC agents. The assay was first validated via standard pharmacological agents and RNA interference using two human SCLC cell lines. We then utilized the assay in a high-throughput screen using the LOPAC(1280) compound library. The screening identified several drugs that target classic cancer signaling pathways as well as neuroendocrine markers in SCLC. In particular, perturbation of dopaminergic and serotonergic signaling inhibits SCLC cell viability.Conclusions
The convergence of our pharmacological data with key SCLC pathway components reiterates the importance of neurotransmitter signaling in SCLC etiology and points to possible leads for drug development.
SUBMITTER: Improgo MR
PROVIDER: S-EPMC3169587 | biostudies-literature | 2011
REPOSITORIES: biostudies-literature
Improgo Ma Reina D MR Johnson Christopher W CW Tapper Andrew R AR Gardner Paul D PD
PloS one 20110908 9
<h4>Background</h4>Frontline treatment of small cell lung carcinoma (SCLC) relies heavily on chemotherapeutic agents and radiation therapy. Though SCLC patients respond well to initial cycles of chemotherapy, they eventually develop resistance. Identification of novel therapies against SCLC is therefore imperative.<h4>Methods and findings</h4>We have designed a bioluminescence-based cell viability assay for high-throughput screening of anti-SCLC agents. The assay was first validated via standard ...[more]