Unknown

Dataset Information

0

Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings.


ABSTRACT: Hydrogen sulphide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in animals and plants. In this report, the role of H(2)S in modulating photosynthesis of Spinacia oleracea seedlings was investigated. The main results are as follows. (i) NaHS, a donor of H(2)S, was found to increase the chlorophyll content in leaves. (ii) Seedlings treated with different concentrations of NaHS for 30 d exhibited a significant increase in seedling growth, soluble protein content, and photosynthesis in a dose-dependent manner, with 100 ?M NaHS being the optimal concentration. (iii) The number of grana lamellae stacking into the functional chloroplasts was also markedly increased by treatment with the optimal NaHS concentration. (iv) The light saturation point (Lsp), maximum net photosynthetic rate (Pmax), carboxylation efficiency (CE), and maximal photochemical efficiency of photosystem II (F(v)/F(m)) reached their maximal values, whereas the light compensation point (Lcp) and dark respiration (Rd) decreased significantly under the optimal NaHS concentration. (v) The activity of ribulose-1,5-bisphosphate carboxylase (RuBISCO) and the protein expression of the RuBISCO large subunit (RuBISCO LSU) were also significantly enhanced by NaHS. (vi) The total thiol content, glutathione and cysteine levels, internal concentration of H(2)S, and O-acetylserine(thiol)lyase and L-cysteine desulphydrase activities were increased to some extent, suggesting that NaHS also induced the activity of thiol redox modification. (vii) Further studies using quantitative real-time PCR showed that the gene encoding the RuBISCO large subunit (RBCL), small subunit (RBCS), ferredoxin thioredoxin reductase (FTR), ferredoxin (FRX), thioredoxin m (TRX-m), thioredoxin f (TRX-f), NADP-malate dehydrogenase (NADP-MDH), and O-acetylserine(thiol)lyase (OAS) were up-regulated, but genes encoding serine acetyltransferase (SERAT), glycolate oxidase (GYX), and cytochrome oxidase (CCO) were down-regulated after exposure to the optimal concentration of H(2)S. These findings suggest that increases in RuBISCO activity and the function of thiol redox modification may underlie the amelioration of photosynthesis and that H(2)S plays an important role in plant photosynthesis regulation by modulating the expression of genes involved in photosynthesis and thiol redox modification.

SUBMITTER: Chen J 

PROVIDER: S-EPMC3170546 | biostudies-literature | 2011 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings.

Chen Juan J   Wu Fei-Hua FH   Wang Wen-Hua WH   Zheng Chen-Juan CJ   Lin Guang-Hui GH   Dong Xue-Jun XJ   He Jun-Xian JX   Pei Zhen-Ming ZM   Zheng Hai-Lei HL  

Journal of experimental botany 20110530 13


Hydrogen sulphide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in animals and plants. In this report, the role of H(2)S in modulating photosynthesis of Spinacia oleracea seedlings was investigated. The main results are as follows. (i) NaHS, a donor of H(2)S, was found to increase the chlorophyll content in leaves. (ii) Seedlings treated with different concentrations of NaHS for 30 d exhibited a significant increase in seedling growth, so  ...[more]

Similar Datasets

2015-03-23 | GSE42710 | GEO
| S-EPMC10065267 | biostudies-literature
| S-EPMC1162009 | biostudies-other
| S-EPMC4972840 | biostudies-literature
| S-EPMC1149282 | biostudies-other
| S-EPMC3465285 | biostudies-literature
| PRJNA779442 | ENA
| PRJNA630139 | ENA
| PRJDB6306 | ENA
| PRJDB14164 | ENA