Unknown

Dataset Information

0

Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.


ABSTRACT: Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.

SUBMITTER: Zalatan JG 

PROVIDER: S-EPMC3171187 | biostudies-literature | 2007 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.

Zalatan Jesse G JG   Catrina Irina I   Mitchell Rebecca R   Grzyska Piotr K PK   O'brien Patrick J PJ   Herschlag Daniel D   Hengge Alvan C AC  

Journal of the American Chemical Society 20070714 31


Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes p  ...[more]

Similar Datasets

| S-EPMC2622731 | biostudies-literature
| S-EPMC8317658 | biostudies-literature
| S-EPMC4438272 | biostudies-literature
| S-EPMC1219137 | biostudies-other
| S-EPMC8118594 | biostudies-literature
| S-EPMC7948414 | biostudies-literature
| S-EPMC3749886 | biostudies-literature
| S-EPMC4415882 | biostudies-literature
| S-EPMC2538955 | biostudies-literature
| S-EPMC6169531 | biostudies-literature