Unknown

Dataset Information

0

Deletion of the metabolic transcriptional coactivator PGC1β induces cardiac arrhythmia.


ABSTRACT:

Aims

Peroxisome proliferator-activated receptor-γ coactivators PGC1α and PGC1β modulate mitochondrial biogenesis and energy homeostasis. The function of these transcriptional coactivators is impaired in obesity, insulin resistance, and type 2 diabetes. We searched for transcriptomic, lipidomic, and electrophysiological alterations in PGC1β(-/-) hearts potentially associated with increased arrhythmic risk in metabolic diseases.

Methods and results

Microarray analysis in mouse PGC1β(-/-) hearts confirmed down-regulation of genes related to oxidative phosphorylation and the electron transport chain and up-regulation of hypertrophy- and hypoxia-related genes. Lipidomic analysis showed increased levels of the pro-arrhythmic and pro-inflammatory lipid, lysophosphatidylcholine. PGC1β(-/-) mouse electrocardiograms showed irregular heartbeats and an increased incidence of polymorphic ventricular tachycardia following isoprenaline infusion. Langendorff-perfused PGC1β(-/-) hearts showed action potential alternans, early after-depolarizations, and ventricular tachycardia. PGC1β(-/-) ventricular myocytes showed oscillatory resting potentials, action potentials with early and delayed after-depolarizations, and burst firing during sustained current injection. They showed abnormal diastolic Ca(2+) transients, whose amplitude and frequency were increased by isoprenaline, and Ca(2+) currents with negatively shifted inactivation characteristics, with increased window currents despite unaltered levels of CACNA1C RNA transcripts. Inwardly and outward rectifying K(+) currents were all increased. Quantitiative RT-PCR demonstrated increased SCN5A, KCNA5, RYR2, and Ca(2+)-calmodulin dependent protein kinase II expression.

Conclusion

PGC1β(-/-) hearts showed a lysophospholipid-induced cardiac lipotoxicity and impaired bioenergetics accompanied by an ion channel remodelling and altered Ca(2+) homeostasis, converging to produce a ventricular arrhythmic phenotype particularly during adrenergic stress. This could contribute to the increased cardiac mortality associated with both metabolic and cardiac disease attributable to lysophospholipid accumulation.

SUBMITTER: Gurung IS 

PROVIDER: S-EPMC3172981 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC1636769 | biostudies-literature
| S-EPMC7526895 | biostudies-literature
| S-EPMC7279040 | biostudies-literature
| S-EPMC5407164 | biostudies-literature
| S-EPMC5895503 | biostudies-literature
| S-EPMC6883774 | biostudies-literature
| S-EPMC9992308 | biostudies-literature
| S-EPMC9302192 | biostudies-literature
| S-EPMC2740420 | biostudies-literature
| S-EPMC207593 | biostudies-literature