Unknown

Dataset Information

0

Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells.


ABSTRACT: This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes.

SUBMITTER: Mangala LS 

PROVIDER: S-EPMC3173213 | biostudies-literature | 2011 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells.

Mangala Lingegowda S LS   Zhang Ye Y   He Zhenhua Z   Emami Kamal K   Ramesh Govindarajan T GT   Story Michael M   Rohde Larry H LH   Wu Honglu H  

The Journal of biological chemistry 20110720 37


This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To  ...[more]

Similar Datasets

| S-EPMC4731572 | biostudies-literature
| S-EPMC3244445 | biostudies-literature
| S-EPMC6801845 | biostudies-literature
| S-EPMC6496301 | biostudies-literature
2019-09-06 | GSE136939 | GEO
| S-EPMC8269359 | biostudies-literature
| S-EPMC9253108 | biostudies-literature
| S-EPMC5949910 | biostudies-literature
| S-EPMC2600499 | biostudies-literature
| S-EPMC6050915 | biostudies-literature