Unknown

Dataset Information

0

Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers.


ABSTRACT: After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback.The role of mechanoelectric feedback was examined in transforming growth factor-?-treated monolayers of cocultured myofibroblasts and neonatal rat ventricular cells by inhibiting myofibroblast contraction and blocking mechanosensitive channels. Untreated (control) and transforming growth factor-?-treated (fibrotic) anisotropic monolayers were optically mapped for electrophysiological comparison. Longitudinal conduction velocity, transverse conduction velocity, and normalized action potential upstroke velocity (dV/dt(max)) significantly decreased in fibrotic monolayers (14.4 ± 0.7 cm/s [mean ± SEM], 4.1 ± 0.3 cm/s [n=53], and 3.1 ± 0.2% per ms [n=14], respectively) compared with control monolayers (27.2 ± 0.8 cm/s, 8.5 ± 0.4 cm/s [n=40], and 4.9 ± 0.1% per ms [n=12], respectively). Application of the excitation-contraction uncoupler blebbistatin or the mechanosensitive channel blocker gadolinium or streptomycin dramatically increased longitudinal conduction velocity, transverse conduction velocity, and dV/dt(max) in fibrotic monolayers (35.9 ± 1.5 cm/s, 10.3 ± 0.6 cm/s [n=17], and 4.5 ± 0.1% per ms [n=14], respectively). Similar results were observed with connexin43-silenced cardiac myofibroblasts. Spiral-wave induction in fibrotic monolayers also decreased after the aforementioned treatments. Finally, traction force measurements of individual myofibroblasts showed a significant increase with transforming growth factor-?, a decrease with blebbistatin, and no change with mechanosensitive channel blockers.These observations suggest that myofibroblast-myocyte mechanical interactions develop during cardiac injury, and that cardiac conduction may be impaired as a result of increased mechanosensitive channel activation owing to tension applied to the myocyte by the myofibroblast.

SUBMITTER: Thompson SA 

PROVIDER: S-EPMC3176459 | biostudies-literature | 2011 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers.

Thompson Susan A SA   Copeland Craig R CR   Reich Daniel H DH   Tung Leslie L  

Circulation 20110502 19


<h4>Background</h4>After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback.<h4>Methods and results</h4>The role of mechanoelectric feedback was examined in transforming growth factor-β  ...[more]

Similar Datasets

| S-EPMC7904933 | biostudies-literature
| S-EPMC3564921 | biostudies-literature
| S-EPMC9218785 | biostudies-literature
| S-EPMC3993970 | biostudies-literature
| S-EPMC7210299 | biostudies-literature
| S-EPMC6018934 | biostudies-literature
| S-EPMC2528966 | biostudies-literature
| S-EPMC4136601 | biostudies-literature
| S-EPMC7196817 | biostudies-literature
2009-12-10 | E-GEOD-15856 | biostudies-arrayexpress