Motile responses of cochlear outer hair cells stimulated with an alternating electrical field.
Ontology highlight
ABSTRACT: The goal of the present study was to evaluate and characterize the motile responses of guinea pig OHCs, stimulated at frequencies varying from 50 Hz to 4 kHz, using high-definition, high-speed video recording and fully automatic image analysis software. Cells stimulated in continuous, burst and sweeping modes with an external alternating electrical field showed robust fast and slow motility, which were dependent on frequency, mode and intensity of stimulation. In response to continuous stimulation, electromotile amplitude ranged from 0.3% to 3.2% of total cell length, whereas cell length usually decreased in amounts varying from 0.1% to 4.3%. Electromotile amplitude in OHCs stimulated with square wave's sweeps was near constant up to 200 Hz, progressively decreased between 200 Hz and 2 kHz, and then remained constant up to 4 kHz. In continuous and burst modes electromotility followed cycle-by-cycle the electrical stimulus, but it required 1-2 s to fully develop and reach maximal amplitude. Instead, slow cell length changes started about 0.6 s after the beginning and continuously developed up to 3 s after the end of electrical stimulation. Incubation of OHCs with 10 mM salicylate affected electromotility but not slow motility, whereas incubation with 3 mM gadolinium affected both. Thus, combination of external electrical stimulation, high-speed video recording and advanced image analysis software provides information about OHC motile responses at acoustic frequencies with an unprecedented detail, opening new areas of research in the field of OHC mechanics.
SUBMITTER: Kitani R
PROVIDER: S-EPMC3179811 | biostudies-literature | 2011 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA