Ontology highlight
ABSTRACT: Aims
KCNE1 encodes an auxiliary subunit of cardiac potassium channels. Loss-of-function variations in this gene have been associated with the LQT5 form of the long QT syndrome (LQTS), secondary to reduction of I(Ks) current. We present a case in which a D85N rare polymorphism in KCNE1 is associated with an LQT2 phenotype.Methods and results
An 11-year old competitive athlete presented with mild bradycardia and a QTc interval of 470 ms. An LQT2 phenotype, consisting of low-voltage bifid T waves, was evident in the right precordial electrocardiogram leads. During the tachycardia phase following adenosine, QTc increased to 620 ms. Genetic analysis revealed a rare heterozygous polymorphism in KCNE1 predicting the substitution of asparagine for aspartic acid at position 85 of minK (D85N). Patch clamp experiments showed that KCNE1-D85N, when co-expressed with KCNH2 in TSA201 cells, significantly reduced I(Kr). Homozygous co-expression of the mutant with KCNH2 reduced I(Kr) tail current by 85%, whereas heterozygous co-expression reduced the current by 52%, demonstrating for the first time a dominant-negative effect of D85N to reduce I(Kr). Co-expression of the mutant with KCNQ1, either homozygously or heterozygously, produced no change in I(Ks).Conclusions
Our results suggest that a rare polymorphism KCNE1-D85N underlies the development of an LQT2 phenotype in this young athlete by interacting with KCNH2 to cause a dominant-negative effect to reduce I(Kr). Our data provide further evidence in support of the promiscuity of potassium channel ? subunits in modulating the function of multiple potassium channels leading to a diversity of clinical phenotypes.
SUBMITTER: Nof E
PROVIDER: S-EPMC3180238 | biostudies-literature | 2011 Oct
REPOSITORIES: biostudies-literature
Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology 20110628 10
<h4>Aims</h4>KCNE1 encodes an auxiliary subunit of cardiac potassium channels. Loss-of-function variations in this gene have been associated with the LQT5 form of the long QT syndrome (LQTS), secondary to reduction of I(Ks) current. We present a case in which a D85N rare polymorphism in KCNE1 is associated with an LQT2 phenotype.<h4>Methods and results</h4>An 11-year old competitive athlete presented with mild bradycardia and a QTc interval of 470 ms. An LQT2 phenotype, consisting of low-voltage ...[more]