Endocytosis-mediated vacuolar accumulation of the human ApoE apolipoprotein-derived ApoEdpL-W antimicrobial peptide contributes to its antifungal activity in Candida albicans.
Ontology highlight
ABSTRACT: The 18-amino-acid cationic, tryptophan-rich ApoEdpL-W peptide derived from human ApoE apolipoprotein was shown to have antifungal activity against pathogenic yeasts of the Candida genus (except C. glabrata). ApoEdpL-W was active against planktonic cells and early-stage biofilms but less active against mature biofilms, possibly because of its affinity for extracellular matrix beta-glucans. Moreover, ApoEdpL-W absorbed to medically relevant materials partially prevented the formation of biofilms on these materials. The exposure of C. albicans cells to sublethal doses of ApoEdpL-W triggered a transcriptional response reminiscent of that associated with the inactivation of the MYO5 gene required for endocytosis as well as the upregulation of amino acid transporter genes. A fluorescent derivative of ApoEdpL-W accumulated at the cytoplasmic membrane and subsequently was translocated to the vacuole. Strikingly, the inactivation of MYO5 or addition of latrunculin, an inhibitor of endocytosis, prevented the vacuolar accumulation of fluorescein-labeled ApoEdpL-W and reduced the antifungal activity of ApoEdpL-W. This, together with the insensitivity of ApoEdpL-W to alterations in membrane fluidity and high salt, suggested that the ApoEdpL-W mode of action was dependent upon vacuolar targeting and differed significantly from that of other antifungal peptides, such as Histatin-5 and Magainin 2.
SUBMITTER: Rossignol T
PROVIDER: S-EPMC3186967 | biostudies-literature | 2011 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA