Unknown

Dataset Information

0

An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores.


ABSTRACT: The diversity of regulatory systems encoded by bacteria provides an indication of the variety of stresses and interactions that these organisms encounter in nature. We have been investigating how the plant pathogen Pseudomonas syringae pv. tomato DC3000 responds to iron limitation and have focused on the iron starvation (IS) sigma factors to identify regulon members and to explore the mechanistic details of genetic control for this class of regulators. In the study described in this report, we used chromatin immunoprecipitation paired with high-throughput sequencing (ChIP-Seq) to screen the genome for locations associated with binding of the P. syringae IS sigma factor PSPTO_1203. We used multiple methods to demonstrate differential regulation of two genes identified in the ChIP-Seq screen and characterize the promoter elements that facilitate PSPTO_1203-dependent regulation. The genes regulated by PSPTO_1203 encode a TonB-dependent transducer (PSPTO_1206) and a cytoplasmic membrane protein (PSPTO_2145), which is located in the P. syringae pyoverdine cluster. Additionally, we identified siderophores that induce the activity of PSPTO_1203 and used this information to investigate the functional components of the signal transduction cascade.

SUBMITTER: Markel E 

PROVIDER: S-EPMC3187193 | biostudies-literature | 2011 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores.

Markel Eric E   Maciak Charlene C   Butcher Bronwyn G BG   Myers Christopher R CR   Stodghill Paul P   Bao Zhongmeng Z   Cartinhour Sam S   Swingle Bryan B  

Journal of bacteriology 20110812 20


The diversity of regulatory systems encoded by bacteria provides an indication of the variety of stresses and interactions that these organisms encounter in nature. We have been investigating how the plant pathogen Pseudomonas syringae pv. tomato DC3000 responds to iron limitation and have focused on the iron starvation (IS) sigma factors to identify regulon members and to explore the mechanistic details of genetic control for this class of regulators. In the study described in this report, we u  ...[more]

Similar Datasets

| S-EPMC3553754 | biostudies-literature
| S-EPMC122355 | biostudies-literature
| S-EPMC6559019 | biostudies-literature
| S-EPMC1280305 | biostudies-literature
| S-EPMC5809696 | biostudies-literature
| S-EPMC1182459 | biostudies-literature
| S-EPMC3165696 | biostudies-literature
| S-EPMC3916326 | biostudies-literature
| S-EPMC4171367 | biostudies-literature
| S-EPMC4984547 | biostudies-literature