Unknown

Dataset Information

0

Hyperglycemia-induced O-GlcNAcylation and truncation of 4E-BP1 protein in liver of a mouse model of type 1 diabetes.


ABSTRACT: 4E-BP1 is a protein that, in its hypophosphorylated state, binds the mRNA cap-binding protein eIF4E and represses cap-dependent mRNA translation. By doing so, it plays a major role in the regulation of gene expression by controlling the overall rate of mRNA translation as well as the selection of mRNAs for translation. Phosphorylation of 4E-BP1 causes it to release eIF4E to function in mRNA translation. 4E-BP1 is also subject to covalent addition of N-acetylglucosamine to Ser or Thr residues (O-GlcNAcylation) as well as to truncation. In the truncated form, it is both resistant to phosphorylation and able to bind eIF4E with high affinity. In the present study, Ins2(Akita/+) diabetic mice were used to test the hypothesis that hyperglycemia and elevated flux of glucose through the hexosamine biosynthetic pathway lead to increased O-GlcNAcylation and truncation of 4E-BP1 and consequently decreased eIF4E function in the liver. The amounts of both full-length and truncated 4E-BP1 bound to eIF4E were significantly elevated in the liver of diabetic as compared with non-diabetic mice. In addition, O-GlcNAcylation of both the full-length and truncated proteins was elevated by 2.5- and 5-fold, respectively. Phlorizin treatment of diabetic mice lowered blood glucose concentrations and reduced the expression and O-GlcNAcylation of 4E-BP1. Additionally, when livers were perfused in the absence of insulin, 4E-BP1 phosphorylation in the livers of diabetic mice was normalized to the control value, yet O-GlcNAcylation and the association of 4E-BP1 with eIF4E remained elevated in the liver of diabetic mice. These findings provide insight into the pathogenesis of metabolic abnormalities associated with diabetes.

SUBMITTER: Dennis MD 

PROVIDER: S-EPMC3190771 | biostudies-literature | 2011 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hyperglycemia-induced O-GlcNAcylation and truncation of 4E-BP1 protein in liver of a mouse model of type 1 diabetes.

Dennis Michael D MD   Schrufer Tabitha L TL   Bronson Sarah K SK   Kimball Scot R SR   Jefferson Leonard S LS  

The Journal of biological chemistry 20110812 39


4E-BP1 is a protein that, in its hypophosphorylated state, binds the mRNA cap-binding protein eIF4E and represses cap-dependent mRNA translation. By doing so, it plays a major role in the regulation of gene expression by controlling the overall rate of mRNA translation as well as the selection of mRNAs for translation. Phosphorylation of 4E-BP1 causes it to release eIF4E to function in mRNA translation. 4E-BP1 is also subject to covalent addition of N-acetylglucosamine to Ser or Thr residues (O-  ...[more]

Similar Datasets

| S-EPMC4811182 | biostudies-literature
| S-EPMC3712054 | biostudies-literature
| S-EPMC10004604 | biostudies-literature
| S-EPMC6462503 | biostudies-literature
| S-EPMC4273997 | biostudies-literature
| S-EPMC6596930 | biostudies-literature
| S-EPMC5462087 | biostudies-literature
| S-EPMC2927931 | biostudies-literature
| S-EPMC2582304 | biostudies-literature
| S-EPMC10162543 | biostudies-literature