Unknown

Dataset Information

0

Role of the Fas/FasL system in a model of RSV infection in mechanically ventilated mice.


ABSTRACT: Infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury necessitating mechanical ventilation (MV). MV enhances apoptosis and inflammation in mice infected with pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for severe RSV infection in mice. We hypothesized that the Fas/Fas ligand (FasL) system, a dual proapoptotic/proinflammatory system involved in other forms of lung injury, is required for enhanced lung injury in mechanically ventilated mice infected with PVM. C57BL/6 mice and Fas-deficient ("lpr") mice were inoculated intratracheally with PVM. Seven or eight days after PVM inoculation, the mice were subjected to 4 h of MV (tidal volume 10 ml/kg, fraction of inspired O(2) = 0.21, and positive end-expiratory pressure = 3 cm H(2)O). Seven days after PVM inoculation, exposure to MV resulted in less severe injury in lpr mice than in C57BL/6 mice, as evidenced by decreased numbers of polymorphonuclear neutrophils in the bronchoalveolar lavage (BAL), and lower concentrations of the proinflammatory chemokines KC, macrophage inflammatory protein (MIP)-1?, and MIP-2 in the lungs. However, when PVM infection was allowed to progress one additional day, all of the lpr mice (7/7) died unexpectedly between 0.5 and 3.5 h after the onset of ventilation compared with three of the seven ventilated C57BL/6 mice. Parameters of lung injury were similar in nonventilated mice, as was the viral content in the lungs and other organs. Thus, the Fas/FasL system was partly required for the lung inflammatory response in ventilated mice infected with PVM, but attenuation of lung inflammation did not prevent subsequent mortality.

SUBMITTER: van den Berg E 

PROVIDER: S-EPMC3191752 | biostudies-literature | 2011 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of the Fas/FasL system in a model of RSV infection in mechanically ventilated mice.

van den Berg Elske E   van Woensel Job B M JB   Bos Albert P AP   Bem Reinout A RA   Altemeier William A WA   Gill Sean E SE   Martin Thomas R TR   Matute-Bello Gustavo G  

American journal of physiology. Lung cellular and molecular physiology 20110708 4


Infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury necessitating mechanical ventilation (MV). MV enhances apoptosis and inflammation in mice infected with pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for severe RSV infection in mice. We hypothesized that the Fas/Fas ligand (FasL) system, a dual proapoptotic/proinflammatory system involved in other forms of lung injury, is required for enhance  ...[more]

Similar Datasets

| S-EPMC8437342 | biostudies-literature
| S-EPMC5513782 | biostudies-literature
| S-EPMC8014144 | biostudies-literature
| S-EPMC3175547 | biostudies-literature
| S-EPMC3741122 | biostudies-other
| S-EPMC6517146 | biostudies-literature
| S-EPMC6832515 | biostudies-literature
| S-EPMC9438389 | biostudies-literature
| S-EPMC8107110 | biostudies-literature
| S-EPMC1458688 | biostudies-literature