Post-translational membrane insertion of tail-anchored transmembrane EF-hand Ca2+ sensor calneurons requires the TRC40/Asna1 protein chaperone.
Ontology highlight
ABSTRACT: Calneuron-1 and -2 are neuronal EF-hand-type calcium sensor proteins that are prominently targeted to trans-Golgi network membranes and impose a calcium threshold at the Golgi for phosphatidylinositol 4-OH kinase III? activation and the regulated local synthesis of phospholipids that are crucial for TGN-to-plasma membrane trafficking. In this study, we show that calneurons are nonclassical type II tail-anchored proteins that are post-translationally inserted into the endoplasmic reticulum membrane via an association of a 23-amino acid-long transmembrane domain (TMD) with the TRC40/Asna1 chaperone complex. Following trafficking to the Golgi, calneurons are probably retained in the TGN because of the length of the TMD and phosphatidylinositol 4-phosphate lipid binding. Both calneurons rapidly self-associate in vitro and in vivo via their TMD and EF-hand containing the N terminus. Although dimerization and potentially multimerization precludes TRC40/Asna1 binding and thereby membrane insertion, we found no evidence for a cytosolic pool of calneurons and could demonstrate that self-association of calneurons is restricted to membrane-inserted protein. The dimerization properties and the fact that they, unlike every other EF-hand calmodulin-like Ca(2+) sensor, are always associated with membranes of the secretory pathway, including vesicles and plasma membrane, suggests a high degree of spatial segregation for physiological target interactions.
SUBMITTER: Hradsky J
PROVIDER: S-EPMC3196075 | biostudies-literature | 2011 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA