Ontology highlight
ABSTRACT: Backgrounds
Endosomal sorting complex required for transport (ESCRT) is involved in several fundamental cellular processes and human diseases. Many mammalian ESCRT proteins have multiple isoforms but their precise functions remain largely unknown, especially in human neurons.Results
In this study, we differentiated human embryonic stem cells (hESCs) into postmitotic neurons and characterized the functional properties of these neurons. Moreover, we found that among the three human paralogs of the yeast ESCRT-III subunit Snf7, hSnf7-1 and hSnf7-2 are most abundantly expressed in human neurons. Both hSnf7-1 and hSnf7-2 are required for the survival of human neurons, indicating a non-redundant essential function. Indeed, hSnf7-1 and hSnf7-2 are preferentially associated with CHMP2A and CHMP2B, respectively, and regulate the turnover of distinct transmembrane cargos such as neurotransmitter receptors in human neurons.Conclusion
These findings indicate that different mammalian paralogs of the yeast ESCRT-III subunit Snf7 have non-redundant functions in human neurons, suggesting that ESCRT-III with distinct subunit compositions may preferentially regulate different cargo proteins.
SUBMITTER: Lee JA
PROVIDER: S-EPMC3197483 | biostudies-literature | 2011 Oct
REPOSITORIES: biostudies-literature
Lee Jin-A JA Liu Lei L Javier Robyn R Kreitzer Anatol C AC Delaloy Celine C Gao Fen-Biao FB
Molecular brain 20111005
<h4>Backgrounds</h4>Endosomal sorting complex required for transport (ESCRT) is involved in several fundamental cellular processes and human diseases. Many mammalian ESCRT proteins have multiple isoforms but their precise functions remain largely unknown, especially in human neurons.<h4>Results</h4>In this study, we differentiated human embryonic stem cells (hESCs) into postmitotic neurons and characterized the functional properties of these neurons. Moreover, we found that among the three human ...[more]