Unknown

Dataset Information

0

A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments.


ABSTRACT: BACKGROUND: Methane oxidizing prokaryotes in marine sediments are believed to function as a methane filter reducing the oceanic contribution to the global methane emission. In the anoxic parts of the sediments, oxidation of methane is accomplished by anaerobic methanotrophic archaea (ANME) living in syntrophy with sulphate reducing bacteria. This anaerobic oxidation of methane is assumed to be a coupling of reversed methanogenesis and dissimilatory sulphate reduction. Where oxygen is available aerobic methanotrophs take part in methane oxidation. In this study, we used metagenomics to characterize the taxonomic and metabolic potential for methane oxidation at the Tonya seep in the Coal Oil Point area, California. Two metagenomes from different sediment depth horizons (0-4 cm and 10-15 cm below sea floor) were sequenced by 454 technology. The metagenomes were analysed to characterize the distribution of aerobic and anaerobic methanotrophic taxa at the two sediment depths. To gain insight into the metabolic potential the metagenomes were searched for marker genes associated with methane oxidation. RESULTS: Blast searches followed by taxonomic binning in MEGAN revealed aerobic methanotrophs of the genus Methylococcus to be overrepresented in the 0-4 cm metagenome compared to the 10-15 cm metagenome. In the 10-15 cm metagenome, ANME of the ANME-1 clade, were identified as the most abundant methanotrophic taxon with 8.6% of the reads. Searches for particulate methane monooxygenase (pmoA) and methyl-coenzyme M reductase (mcrA), marker genes for aerobic and anaerobic oxidation of methane respectively, identified pmoA in the 0-4 cm metagenome as Methylococcaceae related. The mcrA reads from the 10-15 cm horizon were all classified as originating from the ANME-1 clade. CONCLUSIONS: Most of the taxa detected were present in both metagenomes and differences in community structure and corresponding metabolic potential between the two samples were mainly due to abundance differences. The results suggests that the Tonya Seep sediment is a robust methane filter, where taxa presently dominating this process could be replaced by less abundant methanotrophic taxa in case of changed environmental conditions.

SUBMITTER: Havelsrud OE 

PROVIDER: S-EPMC3197505 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments.

Håvelsrud Othilde Elise OE   Haverkamp Thomas H A TH   Kristensen Tom T   Jakobsen Kjetill S KS   Rike Anne Gunn AG  

BMC microbiology 20111004


<h4>Background</h4>Methane oxidizing prokaryotes in marine sediments are believed to function as a methane filter reducing the oceanic contribution to the global methane emission. In the anoxic parts of the sediments, oxidation of methane is accomplished by anaerobic methanotrophic archaea (ANME) living in syntrophy with sulphate reducing bacteria. This anaerobic oxidation of methane is assumed to be a coupling of reversed methanogenesis and dissimilatory sulphate reduction. Where oxygen is avai  ...[more]

Similar Datasets

| S-EPMC9944285 | biostudies-literature
| S-EPMC2258600 | biostudies-literature
| S-EPMC9626528 | biostudies-literature
2016-04-01 | GSE55293 | GEO
| PRJNA1003025 | ENA
| PRJNA950938 | ENA
| S-EPMC9195934 | biostudies-literature
| S-EPMC4814501 | biostudies-literature
| S-EPMC6298960 | biostudies-literature
| S-EPMC9391474 | biostudies-literature