Unknown

Dataset Information

0

Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis.


ABSTRACT: Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-?E) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-?E attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-?E or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1) of the unfolded protein response, but not the PKR-like ER kinase (PERK) or activating transcription factor 6 (ATF-6) pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-?E-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-?E.

SUBMITTER: DeDiego ML 

PROVIDER: S-EPMC3197621 | biostudies-literature | 2011 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis.

DeDiego Marta L ML   Nieto-Torres Jose L JL   Jiménez-Guardeño Jose M JM   Regla-Nava Jose A JA   Alvarez Enrique E   Oliveros Juan Carlos JC   Zhao Jincun J   Fett Craig C   Perlman Stanley S   Enjuanes Luis L  

PLoS pathogens 20111020 10


Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-ΔE) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, a  ...[more]

Similar Datasets

2012-06-20 | E-GEOD-30589 | biostudies-arrayexpress
2012-06-21 | GSE30589 | GEO
| S-EPMC3035556 | biostudies-literature
| S-EPMC544093 | biostudies-other
| S-EPMC524836 | biostudies-other
| PRJNA698267 | ENA
| PRJNA748164 | ENA