Project description:The dipeptide N-acetylaspartyl-glutamate (NAAG) is an abundant neuropeptide in the mammalian brain. Despite this fact, its physiological role is poorly understood. NAAG is synthesized by a NAAG synthetase catalyzing the ATP-dependent condensation of N-acetylaspartate and glutamate. In vitro NAAG synthetase activity has not been described, and the enzyme has not been purified. Using a bioinformatics approach we identified a putative dipeptide synthetase specifically expressed in the nervous system. Expression of the gene, which we named NAAGS (for NAAG synthetase) was sufficient to induce NAAG synthesis in primary astrocytes or CHO-K1 and HEK-293T cells when they coexpressed the NAA transporter NaDC3. Furthermore, coexpression of NAAGS and the recently identified N-acetylaspartate (NAA) synthase, Nat8l, in CHO-K1 or HEK-293T cells was sufficient to enable these cells to synthesize NAAG. Identity of the reaction product of NAAGS was confirmed by HPLC and electrospray ionization tandem mass spectrometry (ESI-MS). High expression levels of NAAGS were restricted to the brain, spinal cord, and testis. Taken together our results strongly suggest that the identified gene encodes a NAAG synthetase. Its identification will enable further studies to examine the role of this abundant neuropeptide in the vertebrate nervous system.
Project description:Chemogenetic tools such as designer receptors exclusively activated by designer drugs (DREADDs) are routinely used to modulate neuronal and non-neuronal signaling and activity in a relatively noninvasive manner. The first generation of DREADDs were templated from the human muscarinic acetylcholine receptor family and are relatively insensitive to the endogenous agonist acetylcholine but instead are activated by clozapine-N-oxide (CNO). Despite the undisputed success of CNO as an activator of muscarinic DREADDs, it has been known for some time that CNO is subject to a low rate of metabolic conversion to clozapine, raising the need for alternative chemical actuators of muscarinic-based DREADDs. Here we show that DREADD agonist 21 (C21) (11-(1-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine) is a potent and selective agonist at both excitatory (hM3Dq) and inhibitory (hM4Di) DREADDs and has excellent bioavailability, pharmacokinetic properties, and brain penetrability. We also show that C21-induced activation of hM3Dq and hM4Di in vivo can modulate bidirectional feeding in defined circuits in mice. These results indicate that C21 represents an alternative to CNO for in vivo studies where metabolic conversion of CNO to clozapine is a concern.
Project description:Solid rationales are still present for the identification of synthetic ligands to simultaneously target multiple PPAR subtypes for the treatment of T2DM. The purpose of this study was to characterize the in vitro and in vivo differential effects of chiglitazar, a non-TZD type of PPAR pan-agonist currently in phase III clinic development in China, from PPARγ-selective agonist like rosiglitazone. Chiglitazar showed transactivating activity in each PPARα, γ, and δ subtype and upregulated the expression of PPARα and/or PPARδ downstream genes involved in the key processes of lipid metabolism and thermogenesis. Comparable blood glucose lowering effect was observed between chiglitazar and rosiglitazone, but chiglitazar did not significantly increase the body weight in KKAy and fat pad weight in db/db mice. Chiglitazar had high distribution in liver, pancreas, and skeleton muscles but was less present in kidney, heart, and adipose in rats. Heart weight increase was not observed in rats treated with chiglitazar for 6 months at a dose as high as 45 mg kg(-1). The in vitro and in vivo differential features of chiglitazar are informative and encouraging for the further development of this synthetic ligand for the potential use in T2DM.
Project description:N-Acetylaspartylglutamate (NAAG) is found at high concentrations in the vertebrate nervous system. NAAG is an agonist at group II metabotropic glutamate receptors. In addition to its role as a neuropeptide, a number of functions have been proposed for NAAG, including a role as a non-excitotoxic transport form of glutamate and a molecular water pump. We recently identified a NAAG synthetase (now renamed NAAG synthetase I, NAAGS-I), encoded by the ribosomal modification protein rimK-like family member B (Rimklb) gene, as a member of the ATP-grasp protein family. We show here that a structurally related protein, encoded by the ribosomal modification protein rimK-like family member A (Rimkla) gene, is another NAAG synthetase (NAAGS-II), which in addition, synthesizes the N-acetylated tripeptide N-acetylaspartylglutamylglutamate (NAAG(2)). In contrast, NAAG(2) synthetase activity was undetectable in cells expressing NAAGS-I. Furthermore, we demonstrate by mass spectrometry the presence of NAAG(2) in murine brain tissue and sciatic nerves. The highest concentrations of both, NAAG(2) and NAAG, were found in sciatic nerves, spinal cord, and the brain stem, in accordance with the expression level of NAAGS-II. To our knowledge the presence of NAAG(2) in the vertebrate nervous system has not been described before. The physiological role of NAAG(2), e.g. whether it acts as a neurotransmitter, remains to be determined.
Project description:Recent findings implicate group II metabotropic glutamate receptors (mGluR(2/3)) in the reinforcing and dependence-inducing actions of ethanol and identify these receptors as treatment targets for alcoholism. Here, we investigated the effects of mGLuR(2/3) activation on conditioned reinstatement in rats with different ethanol-dependence histories and examined dependence-associated changes in the functional activity of mGluR(2/3). Following ethanol self-administration training and conditioning procedures, rats were made ethanol dependent, using ethanol vapor inhalation, under three conditions: a single intoxication and withdrawal episode (SW), repeated cycles of intoxication and withdrawal (RW), or no intoxication (CTRL). At 1 week after removal from ethanol vapor, self-administration resumed until stable baseline performance was reached, followed by extinction of operant responding and reinstatement tests. Post-withdrawal self-administration was increased in the RW group, but all groups showed conditioned reinstatement. The mGluR(2/3) agonist LY379268 dose -dependently reduced reinstatement in all groups, but was more effective at low doses in the SW and RW groups. The highest dose of LY379268 tested reduced spontaneous locomotor activity and operant responding maintained by a non-drug reinforcer, without differences among groups. The heightened sensitivity to the effects of LY379268 in rats with an ethanol-dependence history was therefore specific to behavior motivated by ethanol-related stimuli. Both the SW and RW groups showed elevated [(35)S]GTPγS binding in the central nucleus of the amygdala (CeA) and bed nucleus of stria terminalis (BNST), relative to the CTRL group. The findings implicate changes in mGluR(2/3) functional activity as a factor in ethanol dependence and support treatment target potential of mGlu(2/3) receptors for craving and relapse prevention.
Project description:Functional modulation of the non-AT1R arm of the renin-angiotensin system, such as via AT2R activation, is known to improve stroke outcome. However, the relevance of the Mas receptor, which along with the AT2R forms the protective arm of the renin-angiotensin system, as a target in stroke is unclear. Here we tested the efficacy of a selective MasR agonist, AVE0991, in in vitro and in vivo models of ischemic stroke. Primary cortical neurons were cultured from E15-17 mouse embryos for 7-9 d, subjected to glucose deprivation for 24 h alone or with test drugs, and percentage cell death was determined using trypan blue exclusion assay. Additionally, adult male mice were subjected to 1 h middle cerebral artery occlusion and were administered either vehicle or AVE0991 (20 mg/kg i.p.) at the commencement of 23 h reperfusion. Some animals were also treated with the MasR antagonist, A779 (80 mg/kg i.p.) 1 h prior to surgery. Twenty-four h after MCAo, neurological deficits, locomotor activity and motor coordination were assessed in vivo, and infarct and edema volumes estimated from brain sections. Following glucose deprivation, application of AVE0991 (10-8 M to 10-6 M) reduced neuronal cell death by ~60% (P<0.05), an effect prevented by the MasR antagonist. By contrast, AVE0991 administration in vivo had no effect on functional or histological outcomes at 24 h following stroke. These findings indicate that the classical MasR agonist, AVE0991, can directly protect neurons from injury following glucose-deprivation. However, this effect does not translate into an improved outcome in vivo when administered systemically following stroke.
Project description:The low affinity metabotropic glutamate receptor mGluR7 has been implicated in numerous CNS disorders; however, a paucity of potent and selective activators has hampered full delineation of the functional role and therapeutic potential of this receptor. In this work, we present the identification, optimization, and characterization of highly potent, novel mGluR7 agonists. Of particular interest is the chromane CVN636, a potent (EC50 7 nM) allosteric agonist which demonstrates exquisite selectivity for mGluR7 compared to not only other mGluRs, but also a broad range of targets. CVN636 demonstrated CNS penetrance and efficacy in an in vivo rodent model of alcohol use disorder. CVN636 thus has potential to progress as a drug candidate in CNS disorders involving mGluR7 and glutamatergic dysfunction.
Project description:Background and purposeAdiponectin (APN) is an adipokine secreted from adipocytes that binds to APN receptors AdipoR1 and AdipoR2 and exerts an anti-inflammatory response through mechanisms not fully understood. There is a need to develop small molecules that activate AdipoR1 and AdipoR2 and to be used to inhibit the inflammatory response in lipopolysaccharide (LPS)-induced endotoxemia and other inflammatory disorders.Experimental approachWe designed 10 new structural analogues of an AdipoR agonist, AdipoRon (APR), and assessed their anti-inflammatory properties. Bone marrow-derived macrophages (BMMs) and peritoneal macrophages (PEMs) were isolated from mice. Levels of pro-inflammatory cytokines were measured by reverse transcription and real-time quantitative polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and microarray in LPS-induced endotoxemia mice and diet-induced obesity (DIO) mice in which systemic inflammation prevails. Western blotting, immunohistochemistry (IHC), siRNA interference and immunoprecipitation were used to detect signalling pathways.Key resultsA novel APN receptor agonist named adipo anti-inflammation agonist (AdipoAI) strongly suppresses inflammation in DIO and endotoxemia mice, as well as in cultured macrophages. We also found that AdipoAI attenuated the association of AdipoR1 and APPL1 via myeloid differentiation marker 88 (MyD88) signalling, thus inhibiting activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and c-Maf pathways and limiting the production of pro-inflammatory cytokines in LPS-induced macrophages.Conclusion and implicationsAdipoAI is a promising alternative therapeutic approach to APN and APR to suppress inflammation in LPS-induced endotoxemia and other inflammatory disorders via distinct signalling pathways.
Project description:To describe the in vitro characteristics and antidiabetic in vivo efficacy of the novel glucagon-like peptide-1 receptor agonist (GLP-1RA) GL0034. Glucagon-like peptide-1 receptor (GLP-1R) kinetic binding parameters, cyclic adenosine monophosphate (cAMP) signalling, endocytosis and recycling were measured using HEK293 and INS-1832/3 cells expressing human GLP-1R. Insulin secretion was measured in vitro using INS-1832/3 cells, mouse islets and human islets. Chronic administration studies to evaluate weight loss and glycaemic effects were performed in db/db and diet-induced obese mice. Compared to the leading GLP-1RA semaglutide, GL0034 showed increased binding affinity and potency-driven bias in favour of cAMP over GLP-1R endocytosis and β-arrestin-2 recruitment. Insulin secretory responses were similar for both ligands. GL0034 (6 nmol/kg) led to at least as much weight loss and lowering of blood glucose as did semaglutide at a higher dose (14 nmol/kg). GL0034 is a G protein-biased agonist that shows powerful antidiabetic effects in mice, and may serve as a promising new GLP-1RA for obese patients with type 2 diabetes.
Project description:The peroxisome proliferator-activated receptor γ (PPARγ) plays an important role in adipocyte differentiation and insulin sensitivity. Its ligand rosiglitazone has anti-diabetic effect but is frequently accompanied with some severe unwanted effects. The aim of the current study was to compare the anti-diabetic effect of CMHX008, a novel thiazolidinedione-derivative, with rosiglitazone. A luciferase assay was used to evaluate in vitro PPARγ activation. 3T3-L1 cells were used to examine adipocyte differentiation. High fat diet (HFD) mice were used to examine in vivo insulin sensitivity. The mRNA levels were evaluated by real-time RT-PCR. Serum biochemical and hormonal variables were assessed using a clinical chemistry analyser. CMHX008 displayed a moderate PPARγ agonist activity, and promoted 3T3-L1 preadipocyte differentiation with lower activity than rosiglitazone. CMHX008 regulated the expression of PPARγ target genes in a different manner from rosiglitazone. CMHX008 increased the expression and secretion of adiponectin with the similar efficacy as rosiglitazone, but only 25% as potent as rosiglitazone for the induction of adipocyte fatty acid binding protein. Treatment of CMHX008 and rosiglitazone protected mice from high fat diet (HFD)-induced glucose intolerance, hyperinsulinemia and inflammation. CMHX008 reduced the mRNA expression of M1 macrophage markers, and significantly increased the expressions of M2 markers. In conclusion, CMHX008 shared the comparable insulin-sensitizing effects as rosiglitazone with lower adipogenic capacity and might potentially be developed into an effective agent for the treatment of diabetes and metabolic disorders.