Project description:Japanese encephalitis (JE) is a global public health issue that has spread widely to more than 20 countries in Asia and has extended its geographic range to the south Pacific region including Australia. JE has become the most important cause of viral encephalitis in the world. Japanese encephalitis viruses (JEV) are divided into five genotypes, based on the nucleotide sequence of the envelope (E) gene. The Muar strain, isolated from patient in Malaya in 1952, is the sole example of genotype V JEV. Here, the XZ0934 strain of JEV was isolated from Culex tritaeniorhynchus, collected in China. The complete nucleotide and amino acid sequence of XZ0934 strain have been determined. The nucleotide divergence ranged from 20.3% to 21.4% and amino acid divergence ranged from 8.4% to 10.0% when compared with the 62 known JEV isolates that belong to genotype I-IV. It reveals low similarity between XZ0934 and genotype I-IV JEVs. Phylogenetic analysis using both complete genome and structural gene nucleotide sequences demonstrates that XZ0934 belongs to genotype V. This, in turn, suggests that genotype V JEV is emerging in JEV endemic areas. Thus, increased surveillance and diagnosis of viral encephalitis caused by genotype V JEV is an issue of great concern to nations in which JEV is endemic.
Project description:Background & objectivesJapanese encephalitis (JE), caused by a mosquito-borne virus JE virus (JEV), is a serious health problem in West Bengal, India. In this study, we report the complete genome sequence of two JEV isolates from West Bengal. The amino acid and nucleotide sequence homology was compared with other Indian strains.MethodsTwo JEV isolates (IND-WB-JE1 and IND-WB-JE2) obtained in 2008 and 2010, respectively, from two districts of the State of West Bengal, respectively were analyzed for genetic variations by sequencing the 10934 bp whole genome of the virus. Of these two districts, one was covered under JE vaccination programme in 2007.ResultsPhylogenetic analysis showed that both the isolates belonged to the genotype III. A total of 16 mutations were identified in the two isolates studied with respect to Vellore P20778 strain. One unique mutation A3215S was only found in IND-WB-JE2 isolate, but not in the isolate IND-WB-JE1. These two isolates showed maximum homology with P20778 strain of India.Interpretation & conclusionsThis study reports on complete gene based phylogenetic analysis of JEV isolates from the State of West Bengal. It was evident from the results that JEV was still under circulation in both vaccine covered and not covered districts of West Bengal.
Project description:Genotype I of Japanese encephalitis virus first appeared in Taiwan in 2008. Phylogenetic analysis of 37 viruses from pig farms in 2009-2010 classified these viruses into 2 unique subclusters of genotype I viruses and suggested multiple introductions and swift replacement of genotype III by genotype I virus in Taiwan.
Project description:Historically, Japanese Encephalitis virus (JEV) genotype III (GIII) has been responsible for human diseases. In recent years, JEV genotype I (GI) has been isolated from mosquitoes collected in numerous countries, but has not been isolated from patients with encephalitis. In this study, we report recovery of JEV GI live virus and identification of JEV GI RNA from cerebrospinal fluid (CSF) of encephalitis patients in JE endemic areas of China. Whole-genome sequencing and molecular phylogenetic analysis of the JEV isolate from the CSF samples was performed. The isolate in this study is highly similar to other JEV GI strains which isolated from mosquitoes at both the nucleotide and deduced amino acid levels. Phylogenetic analysis based on the genomic sequence showed that the isolate belongs to JEV GI, which is consistent with the phylogenetic analysis based on the pre-membrane (PrM) and Glycoprotein genes. As a conclusion, this is the first time to isolate JEV GI strain from CSF samples of encephalitis patients, so continuous survey and evaluate the infectivity and pathogenecity of JEV GI strains are necessary, especially for the JEV GI strains from encephalitis patients. With respect to the latter, because all current JEV vaccines (live and inactivated are derived from JEV GIII strains, future studies should be aimed at investigating and monitoring cross-protection of the human JEV GI isolates against widely used JEV vaccines.
Project description:We report here the first complete genome of the Japanese encephalitis virus (JEV) genotype III strain JEV/SW/IVRI/395A/2014, isolated from stillborn piglets in India. It shares 99% identity with strain JaOArS982 and a few other strains from Japan.
Project description:BackgroundThe current Japanese encephalitis (JE) vaccine derived from G3 JE virus (JEV) can induce protective immunity against G1-G4 JEV genotypes. However, protective efficacy against the emerging G5 genotype has not been reported.Methods/principal findingsUsing in vitro and in vivo tests, biological phenotype and cross-immunoreactions were compared between G3 JEV and G5 JEV (wild strains). The PRNT90 method was used to detect neutralizing antibodies against different genotypes of JEV in JE vaccine-immunized subjects and JE patients. In JE vaccine-immunized mice, the lethal challenge protection rates against G3 and G5 JEV wild strains were 100% and 50%, respectively. The seroconversion rates (SCRs) of virus antibodies against G3 and G5 JEV among vaccinated healthy subjects were 100% and 35%, respectively. All clinically identified JE patients showed high levels of G3 JEV neutralizing antibodies (≥1:10-1280) with positive serum geometric mean titers (GMTs) of 43.2, while for G5 JEV, neutralizing antibody conversion rates were only 64% with positive serum GMTs of 11.14. Moreover, the positive rate of JEV neutralizing antibodies against G5 JEV in pediatric patients was lower than in adults.Conclusions/significanceLow levels of neutralizing/protective antibodies induced by the current JE vaccine, based on the G3 genotype, were observed against the emerging G5 JEV genotype. Our results demonstrate the need for more detailed studies to reevaluate whether or not the apparent emergence of G5 JEV can be attributed to failure of the current vaccine to induce appropriate immune protectivity against this genotype of JEV.
Project description:The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate.
Project description:Japanese encephalitis (JE) is a vaccine-preventable mosquito-borne disease caused by infection with the Japanese encephalitis virus (JEV). JEV has five genotypes, including genotype V (GV), which is considered ancestral to the other genotypes. The first GV strain, GV Muar, was isolated from a Malayan patient in 1952 and GV did not reappear for 57 years until GV XZ0934 was isolated from a mosquito sample in China. Since 2010, 21 GV strains have been identified in Republic of Korea (ROK). Both GV Muar and GV XZ0934 are more pathogenic than other GI/GIII strains and are serologically distinct. However, because the ROK's GV strains have not been experimentally tested, their characteristics are not known. Characterization of the ROK's isolates is needed to enable development of effective GV strain-based vaccines to protect against GV infections.