Unknown

Dataset Information

0

Finding and testing network communities by lumped Markov chains.


ABSTRACT: Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cluster, which is then defined as an "?-community" if such a probability is not smaller than ?. Consistently, a partition composed of ?-communities is an "?-partition." These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired ?-level allows one to immediately select the ?-partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.

SUBMITTER: Piccardi C 

PROVIDER: S-EPMC3207820 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Finding and testing network communities by lumped Markov chains.

Piccardi Carlo C  

PloS one 20111103 11


Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cl  ...[more]

Similar Datasets

| S-EPMC3877001 | biostudies-literature
| S-EPMC4841654 | biostudies-literature
| S-EPMC1474089 | biostudies-literature
| S-EPMC4351540 | biostudies-other
| S-EPMC4823754 | biostudies-other
| S-EPMC6784392 | biostudies-literature
| S-EPMC3632542 | biostudies-literature
| S-EPMC7744037 | biostudies-literature
| S-EPMC9235476 | biostudies-literature
| S-EPMC6023243 | biostudies-literature