Unknown

Dataset Information

0

The plasticity of regulatory T cell function.


ABSTRACT: Regulatory T cells (T(regs)) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. Whereas T(regs) possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any interrelationship or cross-regulatory mechanisms exist to orchestrate and control their utilization is unknown. In this study, we assessed the functional capacity of T(regs) lacking the ability to secrete both IL-10 and IL-35, which individually are required for maximal T(reg) activity. Surprisingly, IL-10/IL-35 double-deficient T(regs) were fully functional in vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (Ctse) expression, enhanced TRAIL (Tnfsf10) expression, and soluble TRAIL release, rendering IL-10/IL-35 double-deficient T(regs) functionally dependent on TRAIL in vitro and in vivo. Lastly, whereas C57BL/6 T(regs) are normally IL-10/IL-35 dependent, BALB/c T(regs), which express high levels of cathepsin E and enhanced TRAIL expression, are partially TRAIL dependent by default. These data reveal that cross-regulatory pathways exist that control the utilization of suppressive mechanisms, thereby providing T(reg) functional plasticity.

SUBMITTER: Pillai MR 

PROVIDER: S-EPMC3208127 | biostudies-literature | 2011 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


Regulatory T cells (T(regs)) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. Whereas T(regs) possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any interrelationship or cross-regulatory mechanisms exist to orchestrate and control their utilization is unknown. In this study, we assessed the functional capacity of T(regs) lacking the ability to secrete both IL-10 and IL-35, which individu  ...[more]

Similar Datasets

2011-12-08 | E-GEOD-29262 | biostudies-arrayexpress
2011-12-08 | GSE29262 | GEO
| S-EPMC1413569 | biostudies-literature
| S-EPMC6547541 | biostudies-literature
| S-EPMC7882197 | biostudies-literature
| S-EPMC5391208 | biostudies-literature
| S-EPMC2630532 | biostudies-literature
| S-EPMC4231740 | biostudies-literature
| S-EPMC2932677 | biostudies-literature
| S-EPMC5904112 | biostudies-literature