The ATP-binding cassette transporter-2 (ABCA2) regulates cholesterol homeostasis and low-density lipoprotein receptor metabolism in N2a neuroblastoma cells.
Ontology highlight
ABSTRACT: The ATP-binding cassette transporter-2 (ABCA2) has been identified as a possible regulator of lipid metabolism. ABCA2 is most highly expressed in the brain but its effects on cholesterol homeostasis in neuronal-type cells have not been characterized. It is important to study the role of ABCA2 in regulating cholesterol homeostasis in neuronal-type cells because ABCA2 has been identified as a possible genetic risk factor for Alzheimer's disease. In this study, the effects of ABCA2 expression on cholesterol homeostasis were examined in mouse N2a neuroblastoma cells. ABCA2 reduced total, free- and esterified cholesterol levels as well as membrane cholesterol but did not perturb cholesterol distribution in organelle or lipid raft compartments. ABCA2 did not modulate de novo cholesterol biosynthesis from acetate. Cholesterol trafficking to the plasma membrane was not affected by ABCA2 but efflux to the physiological acceptor ApoE3 and mobilization of plasma membrane cholesterol to the endoplasmic reticulum for esterification were reduced by ABCA2. ABCA2 reduced esterification of serum and low-density lipoprotein-derived cholesterol but not 25-hydroxycholesterol. ABCA2 decreased low-density lipoprotein receptor (LDLR) mRNA and protein levels and increased its turnover rate. The surface expression of LDLR as well as the uptake of fluroresecent DiI-LDL was also reduced by ABCA2. Reduction of endogenous ABCA2 expression by RNAi treatment of N2a cells and rat primary cortical neurons produced the opposite effects of over-expression of ABCA2, increasing LDLR protein levels. This report identifies ABCA2 as a key regulator of cholesterol homeostasis and LDLR metabolism in neuronal cells.
SUBMITTER: Davis W
PROVIDER: S-EPMC3210877 | biostudies-literature | 2011 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA