Role of calcium and PKC in salivary mucous cell exocrine secretion.
Ontology highlight
ABSTRACT: Fluid and exocrine secretion of mucins by salivary mucous glands is regulated predominantly by parasympathetic activation of muscarinic receptors. A direct role for subsequent putative signaling steps, phospholipase C (PLC), increased intracellular calcium ([Ca(2+)](i)), and isoforms of protein kinase C (PKC) in mediating muscarinic exocrine secretion has not been elucidated, and these are potential therapeutic targets to enhance mucin secretion in hyposalivary patients. We found that muscarinic-induced mucin secretion by rat sublingual tubulo-acini was dependent upon PLC activation and the subsequent increase in [Ca(2+)](i), and further identified a transient PKC-independent component of secretion dependent upon Ca(2+) release from intracellular stores, whereas sustained secretion required entry of extracellular Ca(2+). Interactions among carbachol, PKC inhibitors, phorbol 12-myristate 13-acetate, and thapsigargin to modulate [Ca(2+)](i) implicated conventional PKC isoforms in mediating sustained secretion. With increasing times during carbachol perfusion of glands, in situ, PKC-? redistributed across glandular membrane compartments and underwent a rapid and persistent accumulation near the luminal borders of mucous cells. PKC-?1 displayed transient localization near luminal borders, whereas the novel PKCs, PKC-? or PKC-?, displayed little or no redistribution in mucous cells. Collective results implicate synergistic interactions between diacylglycerol (DAG) and increasing [Ca(2+)](i) levels to activate cPKCs in mediating sustained muscarinic-induced secretion.
SUBMITTER: Culp DJ
PROVIDER: S-EPMC3215756 | biostudies-literature | 2011 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA