Unknown

Dataset Information

0

Intrauterine growth restriction affects hippocampal dual specificity phosphatase 5 gene expression and epigenetic characteristics.


ABSTRACT: Intrauterine growth retardation (IUGR) predisposes humans toward hippocampal morbidities, such as impaired learning and memory. Hippocampal dual specificity phosphatase 5 (DUSP5) may be involved in these morbidities because DUSP5 regulates extracellular signal-regulated kinase phosphorylation (Erk). In the rat, IUGR causes postnatal changes in hippocampal gene expression and epigenetic characteristics. However, the impact of IUGR upon hippocampal DUSP5 expression and epigenetic characteristics is not known. We therefore hypothesized that IUGR affects hippocampal 1) DUSP5 expression, DNA CpG methylation, and histone code, and 2) erk1/2 phosphorylation in a well-characterized rat model of IUGR. We found that IUGR significantly decreased DUSP5 expression in the day of life (DOL) 0 and 21 male rat, while decreasing only DUSP5 protein levels in the DOL21 female rat. Fluorescent in situ hybridization and immunohistochemistry analyses localized the changes in DUSP5 mRNA and protein, many of which occurred in the dentate gyrus. IUGR also caused sex-specific differences in DNA CpG methylation and histone code in two sites of the hippocampal DUSP5 gene, a 5'-flanking specificity protein-1 (SP1) site and exon 2. Finally, when IUGR decreased DUSP5 protein levels, Erk phosphorylation increased. We conclude that IUGR affects hippocampal DUSP5 expression and epigenetic characteristics in a sex-specific manner.

SUBMITTER: Ke X 

PROVIDER: S-EPMC3217330 | biostudies-literature | 2011 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intrauterine growth restriction affects hippocampal dual specificity phosphatase 5 gene expression and epigenetic characteristics.

Ke Xingrao X   McKnight Robert A RA   Caprau Diana D   O'Grady Shannon S   Fu Qi Q   Yu Xing X   Callaway Christopher W CW   Albertine Kurt H KH   Lane Robert H RH  

Physiological genomics 20110809 20


Intrauterine growth retardation (IUGR) predisposes humans toward hippocampal morbidities, such as impaired learning and memory. Hippocampal dual specificity phosphatase 5 (DUSP5) may be involved in these morbidities because DUSP5 regulates extracellular signal-regulated kinase phosphorylation (Erk). In the rat, IUGR causes postnatal changes in hippocampal gene expression and epigenetic characteristics. However, the impact of IUGR upon hippocampal DUSP5 expression and epigenetic characteristics i  ...[more]

Similar Datasets

| S-EPMC4844605 | biostudies-literature
| S-EPMC5084836 | biostudies-literature
| S-EPMC3727019 | biostudies-literature
| S-EPMC4915063 | biostudies-literature
| S-EPMC4736155 | biostudies-literature
| S-EPMC6471577 | biostudies-literature
| S-EPMC3820550 | biostudies-literature
2021-05-12 | GSE174261 | GEO
| S-EPMC3619938 | biostudies-literature
| S-EPMC5483441 | biostudies-other