Single cell analysis of ligand binding and complex formation of interleukin-4 receptor subunits.
Ontology highlight
ABSTRACT: Interleukin-4 (IL-4) is an important class I cytokine involved in adaptive immunity. IL-4 binds with high affinity to the single-pass transmembrane receptor IL-4R?. Subsequently, IL-4R?/IL-4 is believed to engage a second receptor chain, either IL-2R? or IL-13R?1, to form type I or II receptor complexes, respectively. This ternary complex formation then triggers downstream signaling via intracellular Janus kinases bound to the cytoplasmic receptor tails. Here, we study the successive steps of complex formation at the single cell level with confocal fluorescence imaging and correlation spectroscopy. We characterize binding and signaling of fluorescently labeled IL-4 by flow cytometry of IL-4-dependent BaF3 cells. The affinity to ectopically expressed IL-4R? was then measured by single-color fluorescence correlation spectroscopy in adherent HEK293T cells that express the components of the type II IL-4R but not type I. Finally, IL-4-induced complex formation was tested by dual-color fluorescence cross-correlation spectroscopy. The data provide evidence for codiffusion of IL-4-A647 bound IL-4R? and the type II subunit IL-13R?1 fused to enhanced green fluorescent protein, whereas type I complexes containing IL-2R? and JAK3 were not detected at the cell surface. This behavior may reflect hitherto undefined differences in the mode of receptor activation between type I (lymphoid) and type II (epithelial) receptor expressing cells.
SUBMITTER: Weidemann T
PROVIDER: S-EPMC3218321 | biostudies-literature | 2011 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA