Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer.
Ontology highlight
ABSTRACT: We have recently shown that a 150-bp Col10a1 distal promoter (-4296 to -4147 bp) is sufficient to direct hypertrophic chondrocyte-specific reporter (LacZ) expression in vivo. More recently, through detailed sequence analysis we identified two putative tandem-repeat Runx2 binding sites within the 3'-end of this 150-bp region (TGTGGG-TGTGGC, -4187 to -4176 bp). Candidate electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation, and transfection studies demonstrate that these putative Runx2 sites bind Runx2 and mediate upregulated Col10a1/reporter activity in vitro. Transgenic studies using the 5'-sequence without Runx2 sites were not able to drive the cell-specific LacZ reporter activity, suggesting the in vivo requirement of the Runx2 sites located in the 3'-end in mediating Col10a1/reporter expression. Indeed, mutating the Runx2 sites in the context of the 150-bp promoter abolishes its capacity to drive hypertrophic chondrocyte-specific reporter expression in transgenic mice. We have also generated multiple transgenic mouse lines using only the 3'-sequence containing the Runx2 sites to drive the LacZ gene. Interestingly, no hypertrophic chondrocyte-specific blue staining was observed in these transgenic mice. Together, our data support that Runx2 directly interacts with murine Col10a1 cis-enhancer. This interaction is required but not sufficient for cell-specific Col10a1 promoter activity in vivo. Additional cooperative/repressive elements within the 5'- or 3'-sequences of this 150-bp promoter are needed to work with Runx2 together to mediate cell-specific Col10a1 expression. Further delineation of these elements/factors has the potential to identify novel therapeutic targets for multiple skeletal disorders, including osteoarthritis, that show abnormal Col10a1 expression and altered chondrocyte maturation.
SUBMITTER: Li F
PROVIDER: S-EPMC3222790 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA