Unknown

Dataset Information

0

Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells.


ABSTRACT:

Background

Studies have provided important findings about the roles of Notch signaling in neural development. Unfortunately, however, most of these studies have investigated the neural stem cells (NSCs) of mice or other laboratory animals rather than humans, mainly owing to the difficulties associated with obtaining human brain samples. It prompted us to focus on neuroectodermal spheres (NESs) which are derived from human embryonic stem cell (hESC) and densely inhabited by NSCs. We here investigated the role of Notch signaling with the hESC-derived NESs.

Results

From hESCs, we derived NESs, the in-vitro version of brain-derived neurospheres. NES formation was confirmed by increased levels of various NSC marker genes and the emergence of rosette structures in which neuroprogenitors are known to reside. We found that Notch signaling, which maintains stem cell characteristics of in-vivo-derived neuroprogenitors, is active in these hESC-derived NESs, similar to their in-vivo counterpart. Expression levels of Notch signaling molecules such as NICD, DLLs, JAG1, HES1 and HES5 were increased in the NESs. Inhibition of the Notch signaling by a gamma-secretase inhibitor reduced rosette structures, expression levels of NSC marker genes and proliferation potential in the NESs, and, if combined with withdrawal of growth factors, triggered differentiation toward neurons.

Conclusion

Our results indicate that the hESC-derived NESs, which share biochemical features with brain-derived neurospheres, maintain stem cell characteristics mainly through Notch signaling, which suggests that the hESC-derived NESs could be an in-vitro model for in-vivo neurogenesis.

SUBMITTER: Woo SM 

PROVIDER: S-EPMC3224699 | biostudies-literature | 2009 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Notch signaling is required for maintaining stem-cell features of neuroprogenitor cells derived from human embryonic stem cells.

Woo Sun-Mi SM   Kim Janghwan J   Han Hyo-Won HW   Chae Jung-Il JI   Son Mi-Young MY   Cho Sunwha S   Chung Hyung-Min HM   Han Yong-Mahn YM   Kang Yong-Kook YK  

BMC neuroscience 20090817


<h4>Background</h4>Studies have provided important findings about the roles of Notch signaling in neural development. Unfortunately, however, most of these studies have investigated the neural stem cells (NSCs) of mice or other laboratory animals rather than humans, mainly owing to the difficulties associated with obtaining human brain samples. It prompted us to focus on neuroectodermal spheres (NESs) which are derived from human embryonic stem cell (hESC) and densely inhabited by NSCs. We here  ...[more]

Similar Datasets

| S-EPMC2442567 | biostudies-other
| S-EPMC10788285 | biostudies-literature
| S-EPMC6901827 | biostudies-literature
| S-EPMC3066401 | biostudies-literature
| S-EPMC1323159 | biostudies-literature
| S-EPMC2586982 | biostudies-other
| S-EPMC3052197 | biostudies-literature
| S-EPMC2727555 | biostudies-literature
| S-EPMC5121198 | biostudies-literature
| S-EPMC1431581 | biostudies-literature