Unknown

Dataset Information

0

Retinoic acid drives aryl hydrocarbon receptor expression and is instrumental to dioxin-induced toxicity during palate development.


ABSTRACT:

Background

Palate development depends on complex events and is very sensitive to disruption. Accordingly, clefts are the most common congenital malformations worldwide, and a connection is proposed with fetal exposure to toxic factors or environmental contaminants, such as dioxins. There is increasing evidence that dioxin interferes with all-trans-retinoic acid (atRA), a hormone-like signal derived from vitamin A, which plays an essential role during embryonic development. Although similarities have been described between dioxin-induced toxicity and the outcome of altered atRA signaling during palate development, their relationship needs to be clarified.

Objectives

We used a genetic approach to understand the interaction between atRA and dioxin and to identify the cell type targeted by dioxin toxicity during secondary palate formation in mice.

Methods

We analyzed the phenotype of mouse embryos harboring an atRA-sensitive reporter transgene or bearing null mutations for atRA-synthesizing enzymes (RALDH) or atRA receptors (RAR) and maternally exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at gestation day 10.5.

Results

We found that an intact atRA signal was required to enable TCDD to induce cleft palate. This mandatory atRA signal was generated through the activity of RALDH3 in the nasal epithelium and was transduced by RAR? (RARG) in the nasal mesenchyme, where it notably controlled aryl hydrocarbon receptor (Ahr) transcript levels. TCDD also did not alter the developmental pattern of atRA signaling during palate formation.

Conclusions

TCDD-induced alteration of secondary palate development in the mouse appears to depend on atRA signaling, which controls AHR expression. This mechanism is likely conserved throughout vertebrate evolution and may therefore be relevant in humans.

SUBMITTER: Jacobs H 

PROVIDER: S-EPMC3226489 | biostudies-literature | 2011 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Retinoic acid drives aryl hydrocarbon receptor expression and is instrumental to dioxin-induced toxicity during palate development.

Jacobs Hugues H   Dennefeld Christine C   Féret Betty B   Viluksela Matti M   Håkansson Helen H   Mark Manuel M   Ghyselinck Norbert B NB  

Environmental health perspectives 20110801 11


<h4>Background</h4>Palate development depends on complex events and is very sensitive to disruption. Accordingly, clefts are the most common congenital malformations worldwide, and a connection is proposed with fetal exposure to toxic factors or environmental contaminants, such as dioxins. There is increasing evidence that dioxin interferes with all-trans-retinoic acid (atRA), a hormone-like signal derived from vitamin A, which plays an essential role during embryonic development. Although simil  ...[more]

Similar Datasets

| S-EPMC1277115 | biostudies-literature
| S-EPMC2975661 | biostudies-literature
2008-11-01 | GSE10082 | GEO
| S-EPMC7737989 | biostudies-literature
2009-09-18 | GSE15859 | GEO
2010-05-05 | E-GEOD-15859 | biostudies-arrayexpress
| S-EPMC3575475 | biostudies-literature
| S-EPMC2999625 | biostudies-literature
2009-09-21 | GSE15857 | GEO
2009-09-21 | GSE15858 | GEO