Unknown

Dataset Information

0

Roles for Gcn5 in promoting nucleosome assembly and maintaining genome integrity.


ABSTRACT: The process of coordinated DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3-H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three histone chaperones are regulated by modifications on the histone proteins. One such modification is histone H3 lysine 56 acetylation (H3K56Ac), a mark of newly-synthesized histone H3 that regulates the interaction between H3-H4 and the histone chaperones CAF-1 and Rtt106 following DNA replication and DNA repair. Recently, we have shown that the lysine acetyltransferase Gcn5 and H3 N-terminal tail lysine acetylation also regulates the interaction between H3-H4 and CAF-1 to promote the deposition of newly-synthesized histones. Genetic studies indicate that Gcn5 and Rtt109, the H3K56Ac lysine acetyltransferase, function in parallel to maintain genome stability. Utilizing synthetic genetic array analysis, we set out to identify additional genes that function in parallel with Gcn5 in response to DNA damage. We summarize here the role of Gcn5 in nucleosome assembly and suggest that Gcn5 impacts genome integrity via multiple mechanisms, including nucleosome assembly.

SUBMITTER: Burgess RJ 

PROVIDER: S-EPMC3230476 | biostudies-literature | 2010 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Roles for Gcn5 in promoting nucleosome assembly and maintaining genome integrity.

Burgess Rebecca J RJ   Zhang Zhiguo Z  

Cell cycle (Georgetown, Tex.) 20100823 15


The process of coordinated DNA replication and nucleosome assembly, termed replication-coupled (RC) nucleosome assembly, is important for the maintenance of genome integrity. Loss of genome integrity is linked to aging and cancer. RC nucleosome assembly involves deposition of histone H3-H4 by the histone chaperones CAF-1, Rtt106 and Asf1 onto newly-replicated DNA. Coordinated actions of these three histone chaperones are regulated by modifications on the histone proteins. One such modification i  ...[more]

Similar Datasets

| S-EPMC2954627 | biostudies-literature
| S-EPMC4183562 | biostudies-literature
| S-EPMC11212987 | biostudies-literature
| S-EPMC6917834 | biostudies-literature
| S-EPMC3334882 | biostudies-literature
| S-EPMC2741452 | biostudies-literature
| S-EPMC4905024 | biostudies-other
| S-EPMC10718285 | biostudies-literature
| S-EPMC4063814 | biostudies-literature
| S-EPMC3426554 | biostudies-literature