Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy.
Ontology highlight
ABSTRACT: Our study investigated the immunomodulatory effects of sunitinib to rationally design combinational platforms with immunotherapies for the treatment of solid tumors. Using a mouse model, we studied the effects of sunitinib given for 4 weeks at concentrations comparable to 37.5-50 mg/day in humans, followed by 2 weeks off the drug (sunitinib 4/2). We assessed the effect of differently timed combinations of sunitinib and a poxvirus-based vaccine encoding carcinoembryonic antigen (CEA) plus 3 costimulatory molecules on immune responses in CEA-transgenic (CEA-Tg) mice. Antitumor studies were performed in CEA-Tg mice bearing CEA-transfected MC38 murine colon carcinomas (MC38-CEA), treated either concurrently or sequentially with sunitinib and vaccine. In vitro, sunitinib inhibited PDGFR phosphorylation on MC38-CEA cells at concentrations similar to those biologically available during human treatment. In vivo, one cycle of sunitinib 4/2 caused bimodal immune effects: (a) decreased regulatory cells during the 4 weeks of treatment and (b) an immune-suppression rebound during the 2 weeks of treatment interruption. In a model using CEA-Tg mice bearing CEA(+) tumors, continuous sunitinib followed by vaccine increased intratumoral infiltration of antigen-specific T lymphocytes, decreased immunosuppressant T regulatory cells and myeloid-derived suppressor cells, reduced tumor volumes and increased survival. The immunomodulatory activity of continuous sunitinib administration can create a more immune-permissive environment. In combination with immunotherapies, sunitinib treatment should precede vaccine, to precondition the immune system, to maximize the response to vaccine-mediated immune enhancement.
SUBMITTER: Farsaci B
PROVIDER: S-EPMC3232304 | biostudies-literature | 2012 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA