Molecular evolution of the infrared sensory gene TRPA1 in snakes and implications for functional studies.
Ontology highlight
ABSTRACT: TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of "heat vision" in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing.
SUBMITTER: Geng J
PROVIDER: S-EPMC3233596 | biostudies-literature | 2011
REPOSITORIES: biostudies-literature
ACCESS DATA