Unknown

Dataset Information

0

Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes.


ABSTRACT:

Aims

Redox regulation of cellular processes is an important mechanism that operates in organisms from bacteria to mammals. Much of the redox control is provided by thiol oxidoreductases: proteins that employ cysteine residues for redox catalysis. We wanted to identify thiol oxidoreductases on a genome-wide scale and use this information to obtain insights into the general principles of thiol-based redox control.

Results

Thiol oxidoreductases were identified by three independent methods that took advantage of the occurrence of selenocysteine homologs of these proteins and functional linkages among thiol oxidoreductases revealed by comparative genomics. Based on these searches, we describe thioredoxomes, which are sets of thiol oxidoreductases in organisms. Their analyses revealed that these proteins are present in all living organisms, generally account for 0.5%-1% of the proteome and that their use correlates with proteome size, distinguishing these proteins from those involved in core metabolic functions. We further describe thioredoxomes of Saccharomyces cerevisiae and humans, including proteins which have not been characterized previously. Thiol oxidoreductases occur in various cellular compartments and are enriched in the endoplasmic reticulum and cytosol.

Innovation

We developed bioinformatics methods and used them to characterize thioredoxomes on a genome-wide scale, which in turn revealed properties of thioredoxomes.

Conclusion

These data provide information about organization and properties of thiol-based redox control, whose use is increased with the increase in complexity of organisms. Our data also show an essential combined function of a set of thiol oxidoreductases, and of thiol-based redox regulation in general, in all living organisms.

SUBMITTER: Fomenko DE 

PROVIDER: S-EPMC3234660 | biostudies-literature | 2012 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes.

Fomenko Dmitri E DE   Gladyshev Vadim N VN  

Antioxidants & redox signaling 20111123 3


<h4>Aims</h4>Redox regulation of cellular processes is an important mechanism that operates in organisms from bacteria to mammals. Much of the redox control is provided by thiol oxidoreductases: proteins that employ cysteine residues for redox catalysis. We wanted to identify thiol oxidoreductases on a genome-wide scale and use this information to obtain insights into the general principles of thiol-based redox control.<h4>Results</h4>Thiol oxidoreductases were identified by three independent me  ...[more]

Similar Datasets

| S-EPMC2673044 | biostudies-literature
| S-EPMC2706539 | biostudies-literature
| S-EPMC5862533 | biostudies-literature
| S-EPMC8004825 | biostudies-literature
| S-EPMC7196587 | biostudies-literature
| S-EPMC3909715 | biostudies-literature
| S-EPMC3675578 | biostudies-literature
| S-EPMC5206561 | biostudies-literature
| S-EPMC4434903 | biostudies-other
| S-EPMC7046647 | biostudies-literature