Unknown

Dataset Information

0

Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling.


ABSTRACT: Certain fish and amphibians regenerate entire fins and limbs after amputation, whereas such potential is absent in birds and limited in mammals to digit tips [1, 2]. Additionally, regenerative success can change during life stages. Anuran tadpoles gradually lose the capacity to regenerate limbs [3, 4], and digit regeneration occurs more effectively in fetal mice and human children than adults [5-8]. Little is known about mechanisms that control regenerative capacity. Here, we identify an unexpected difference between male and female zebrafish in the regenerative potential of a major appendage. Males display regenerative defects in amputated pectoral fins, caused by impaired blastemal proliferation. This regenerative failure emerges after sexual maturity, is mimicked in androgen-treated females, and is suppressed in males by androgen receptor antagonism. Androgen signaling maintains expression of dkk1b and igfbp2a, which encode secreted inhibitors of Wnt and Igf signaling, respectively. Furthermore, the regulatory target of Wnts and Igfs, GSK3?, is inefficiently inactivated in male fin regenerates compared with females. Pharmacological inhibition of GSK3 in males increases blastemal proliferation and restores regenerative pattern. Our findings identify a natural sex bias in appendage regenerative capacity and indicate an underlying regulatory circuit in which androgen locally restricts key morphogenetic programs after amputation.

SUBMITTER: Nachtrab G 

PROVIDER: S-EPMC3236601 | biostudies-literature | 2011 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sexually dimorphic fin regeneration in zebrafish controlled by androgen/GSK3 signaling.

Nachtrab Gregory G   Czerwinski Michael M   Poss Kenneth D KD  

Current biology : CB 20111110 22


Certain fish and amphibians regenerate entire fins and limbs after amputation, whereas such potential is absent in birds and limited in mammals to digit tips [1, 2]. Additionally, regenerative success can change during life stages. Anuran tadpoles gradually lose the capacity to regenerate limbs [3, 4], and digit regeneration occurs more effectively in fetal mice and human children than adults [5-8]. Little is known about mechanisms that control regenerative capacity. Here, we identify an unexpec  ...[more]

Similar Datasets

| S-EPMC4996968 | biostudies-literature
| S-EPMC5596562 | biostudies-other
| S-EPMC5990605 | biostudies-other
| S-EPMC2587605 | biostudies-literature
| S-EPMC4067955 | biostudies-literature
| S-EPMC3433902 | biostudies-literature
| S-EPMC3950318 | biostudies-other
| S-EPMC9259016 | biostudies-literature
| S-EPMC2929184 | biostudies-other
| S-EPMC3370987 | biostudies-literature