Unknown

Dataset Information

0

Stable coordination of the inhibitory Ca2+ ion at the metal ion-dependent adhesion site in integrin CD11b/CD18 by an antibody-derived ligand aspartate: implications for integrin regulation and structure-based drug design.


ABSTRACT: A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg(2+) ion hexacoordinated at the metal ion-dependent adhesion site (MIDAS) in the integrin A domain. This interaction stabilizes the A domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking mAb 107 binds MIDAS of integrin CD11b/CD18 A domain (CD11bA), but in contrast, it favors the inhibitory Ca(2+) ion over the Mg(2+) ion at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of the Ca(2+) ion at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca(2+) ion. Binding of the Fab fragment of mAb 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that the denticity of the ligand Asp/Glu can modify the divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca(2+) ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists.

SUBMITTER: Mahalingam B 

PROVIDER: S-EPMC3237904 | biostudies-literature | 2011 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stable coordination of the inhibitory Ca2+ ion at the metal ion-dependent adhesion site in integrin CD11b/CD18 by an antibody-derived ligand aspartate: implications for integrin regulation and structure-based drug design.

Mahalingam Bhuvaneshwari B   Ajroud Kaouther K   Alonso José Luis JL   Anand Saurabh S   Adair Brian D BD   Horenstein Alberto L AL   Malavasi Fabio F   Xiong Jian-Ping JP   Arnaout M Amin MA  

Journal of immunology (Baltimore, Md. : 1950) 20111116 12


A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg(2+) ion hexacoordinated at the metal ion-dependent adhesion site (MIDAS) in the integrin A domain. This interaction stabilizes the A domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, elic  ...[more]

Similar Datasets

| S-EPMC1132034 | biostudies-other
| S-EPMC7577938 | biostudies-literature
| S-EPMC5033469 | biostudies-literature
| S-EPMC3853324 | biostudies-literature
| S-EPMC4507414 | biostudies-literature
| S-EPMC6955338 | biostudies-literature
| S-EPMC10604325 | biostudies-literature
| S-EPMC10742634 | biostudies-literature
| S-EPMC3017439 | biostudies-literature
| S-EPMC3065194 | biostudies-literature