Unknown

Dataset Information

0

Measuring cell identity in noisy biological systems.


ABSTRACT: Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty measure dSpec, which measures the effect of noise on specificity. Using global gene expression data from the mouse brain, plant root and human white blood cells, we show that Spec identifies genes with variable expression levels that are nonetheless highly specific of particular cell types. When samples from different individuals are used, dSpec measures genes' transcriptional plasticity in each cell type. Our approach is broadly applicable to mapped gene expression measurements in stem cell biology, developmental biology, cancer biology and biomarker identification. As an example of such applications, we show that Spec identifies a new class of biomarkers, which exhibit variable expression without compromising specificity. The approach provides a unifying theoretical framework for quantifying specificity in the presence of noise, which is widely applicable across diverse biological systems.

SUBMITTER: Birnbaum KD 

PROVIDER: S-EPMC3241637 | biostudies-literature | 2011 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Measuring cell identity in noisy biological systems.

Birnbaum Kenneth D KD   Kussell Edo E  

Nucleic acids research 20110729 21


Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty measu  ...[more]

Similar Datasets

| S-EPMC3642071 | biostudies-literature
| PRJNA532830 | ENA
| S-EPMC4702065 | biostudies-literature
| S-EPMC5002087 | biostudies-literature
| S-EPMC6786937 | biostudies-literature
| S-EPMC3359173 | biostudies-other
| S-EPMC3306009 | biostudies-literature
| S-EPMC2992511 | biostudies-literature
| S-EPMC5322368 | biostudies-literature
| S-EPMC3702519 | biostudies-literature