Genome-wide microarray analyses identify the protein C receptor as a novel calcineurin/nuclear factor of activated T cells-dependent gene in vascular smooth muscle cell phenotypic modulation.
Ontology highlight
ABSTRACT: Calcineurin (Cn) and the nuclear factor of activated T cells (NFAT) family of transcription factors are critical in vascular smooth muscle cell (SMC) development and pathology. Here, we used a genomics approach to identify and validate NFAT gene targets activated during platelet-derived growth factor-BB (PDGF-BB)-induced SMC phenotypic modulation.Genome-wide expression arrays were used to identify genes both (1) differentially activated in response to PDGF-BB and (2) whose differential expression was reduced by both the Cn inhibitor cyclosporin A and the NFAT inhibitor A-285222. The 20 most pharmacologically sensitive genes were validated by quantitative reverse transcription-polymerase chain reaction analysis of PDGF-BB-stimulated SMCs in the presence of Cn/NFAT inhibitors, including the VIVIT peptide. In all experiments, protein C receptor (PROCR) gene activation was reduced. We showed that PROCR expression was virtually absent in untreated, quiescent SMCs. PDGF-BB stimulation, however, induced significant PROCR promoter activation and downstream protein expression in a Cn/NFAT-dependent manner. Mutation of a species-conserved, NFAT binding motif significantly attenuated PDGF-BB-induced PROCR promoter activity, thereby distinguishing NFAT as the first PROCR transcriptional activator to date. Moreover, SMC PROCR expression was upregulated in the neointima as early as 7 days following acute vascular injury in rat carotid arteries.We hereby report PROCR as a novel, NFAT-dependent gene that may be implicated in vascular restenosis and consequent inward remodeling.
SUBMITTER: Lee MY
PROVIDER: S-EPMC3245683 | biostudies-literature | 2011 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA