Unknown

Dataset Information

0

Latitudinal gradients in degradation of marine dissolved organic carbon.


ABSTRACT: Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars). Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2) reservoir, such a change could profoundly affect the global carbon cycle.

SUBMITTER: Arnosti C 

PROVIDER: S-EPMC3247214 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Latitudinal gradients in degradation of marine dissolved organic carbon.

Arnosti Carol C   Steen Andrew D AD   Ziervogel Kai K   Ghobrial Sherif S   Jeffrey Wade H WH  

PloS one 20111228 12


Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC). The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple mod  ...[more]

Similar Datasets

| S-EPMC7490696 | biostudies-literature
| S-EPMC4447701 | biostudies-literature
| S-EPMC6810255 | biostudies-literature
| S-EPMC8491159 | biostudies-literature
| S-EPMC9069685 | biostudies-literature
| S-EPMC5180147 | biostudies-literature
| S-EPMC5395014 | biostudies-literature
| S-EPMC6528441 | biostudies-literature
| S-EPMC4103801 | biostudies-literature
| S-EPMC4561884 | biostudies-other