Two-step engulfment of apoptotic cells.
Ontology highlight
ABSTRACT: Apoptotic cells expose phosphatidylserine on their surface as an "eat me" signal, and macrophages respond by engulfing them. Although several molecules that specifically bind phosphatidylserine have been identified, the molecular mechanism that triggers engulfment remains elusive. Here, using a mouse pro-B cell line, Ba/F3, that grows in suspension, we reconstituted the engulfment of apoptotic cells. The parental Ba/F3 cells did not engulf apoptotic cells. Ba/F3 transformants expressing T cell immunoglobulin- and mucin-domain-containing molecule 4 (Tim4), a type I membrane protein that specifically binds phosphatidylserine, efficiently bound apoptotic cells in a phosphatidylserine-dependent manner but did not engulf them. However, Ba/F3 transformants expressing both Tim4 and the integrin ?(v)?(3) complex bound to and engulfed apoptotic cells in the presence of milk fat globule epidermal growth factor factor VIII (MFG-E8), a secreted protein that can bind phosphatidylserine and integrin ?(v)?(3). These results indicate that the engulfment of apoptotic cells proceeds in two steps: Tim4 tethers apoptotic cells, and the integrin ?(v)?(3) complex mediates engulfment in coordination with MFG-E8. A similar two-step engulfment of apoptotic cells was observed with mouse resident peritoneal macrophages. Furthermore, the Tim4/integrin-mediated engulfment by the Ba/F3 cells was enhanced in cells expressing Rac1 and Rab5, suggesting that this system well reproduces the engulfment of apoptotic cells by macrophages.
SUBMITTER: Toda S
PROVIDER: S-EPMC3255703 | biostudies-literature | 2012 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA