Unknown

Dataset Information

0

Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach.


ABSTRACT: BACKGROUND: The incidence of congenital heart disease (CHD) is continuously increasing among infants born alive nowadays, making it one of the leading causes of infant morbidity worldwide. Various studies suggest that both genetic and environmental factors lead to CHD, and therefore identifying its candidate genes and disease-markers has been one of the central topics in CHD research. By using the high-throughput genomic data of CHD which are available recently, network-based methods provide powerful alternatives of systematic analysis of complex diseases and identification of dysfunctional modules and candidate disease genes. RESULTS: In this paper, by modeling the information flow from source disease genes to targets of differentially expressed genes via a context-specific protein-protein interaction network, we extracted dysfunctional modules which were then validated by various types of measurements and independent datasets. Network topology analysis of these modules revealed major and auxiliary pathways and cellular processes in CHD, demonstrating the biological usefulness of the identified modules. We also prioritized a list of candidate CHD genes from these modules using a guilt-by-association approach, which are well supported by various kinds of literature and experimental evidence. CONCLUSIONS: We provided a network-based analysis to detect dysfunctional modules and disease genes of CHD by modeling the information transmission from source disease genes to targets of differentially expressed genes. Our method resulted in 12 modules from the constructed CHD subnetwork. We further identified and prioritized candidate disease genes of CHD from these dysfunctional modules. In conclusion, module analysis not only revealed several important findings with regard to the underlying molecular mechanisms of CHD, but also suggested the distinct network properties of causal disease genes which lead to identification of candidate CHD genes.

SUBMITTER: He D 

PROVIDER: S-EPMC3256240 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of dysfunctional modules and disease genes in congenital heart disease by a network-based approach.

He Danning D   Liu Zhi-Ping ZP   Chen Luonan L  

BMC genomics 20111202


<h4>Background</h4>The incidence of congenital heart disease (CHD) is continuously increasing among infants born alive nowadays, making it one of the leading causes of infant morbidity worldwide. Various studies suggest that both genetic and environmental factors lead to CHD, and therefore identifying its candidate genes and disease-markers has been one of the central topics in CHD research. By using the high-throughput genomic data of CHD which are available recently, network-based methods prov  ...[more]

Similar Datasets

| S-EPMC8934958 | biostudies-literature
| S-EPMC5402266 | biostudies-literature
2016-01-30 | GSE64931 | GEO
| S-EPMC4234496 | biostudies-literature
| S-EPMC4519691 | biostudies-literature
| PRJNA183421 | ENA
| S-EPMC3858171 | biostudies-literature
| S-EPMC7931238 | biostudies-literature
| S-EPMC5774789 | biostudies-literature
2022-07-05 | PXD022091 | Pride