Dissection of Wnt5a-Ror2 signaling leading to matrix metalloproteinase (MMP-13) expression.
Ontology highlight
ABSTRACT: It has been shown that constitutively active Wnt5a-Ror2 signaling in osteosarcoma cell lines plays crucial roles in induced expression of matrix metalloproteinase-13 (MMP-13), required for their invasiveness; however, it remains largely unclear about the molecular basis of MMP-13 gene induction by Wnt5a-Ror2 signaling. Here we show by reporter assay that the activator protein 1 (AP1) (binding site in the promoter region of MMP-13 gene is primarily responsible for its transcriptional activation by Wnt5a-Ror2 signaling in osteosarcoma cell lines SaOS-2 and U2OS. Chromatin immunoprecipitation assays revealed that c-Jun and ATF2 are crucial transcription factors recruited to the AP1-binding site in the MMP-13 gene promoter during Wnt5a-Ror2 signaling in SaOS-2 cells. Using siRNA-mediated suppression or specific inhibitors, we also show that Dishevelled2 (Dvl2) and c-Jun N-terminal kinase are required for MMP-13 gene induction presumably via phosphorylation of c-Jun and ATF2 during Wnt5a-Ror2 signaling in SaOS-2 cells. Interestingly, Dvl2 and Rac1, but not Dvl3, are required for MMP-13 expression in SaOS-2 cells, whereas Dvl3, but not Dvl2 and Rac1, is required for its expression in U2OS cells, indicating the presence of distinct intracellular signaling machineries leading to expression of the same gene, in this case MMP-13 gene in different osteosarcoma cell lines. Moreover, we provide evidence suggesting that Wnt5a-Ror2 signaling might also be required for expression of MMP-13 gene during the development of the cartilaginous tissue.
SUBMITTER: Yamagata K
PROVIDER: S-EPMC3256912 | biostudies-literature | 2012 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA