Unknown

Dataset Information

0

Modulation of Wnt/?-catenin signaling in human embryonic stem cells using a 3-D microwell array.


ABSTRACT: Intercellular interactions in the cell microenvironment play a critical role in determining cell fate, but the effects of these interactions on pathways governing human embryonic stem cell (hESC) behavior have not been fully elucidated. We and others have previously reported that 3-D culture of hESCs affects cell fates, including self-renewal and differentiation to a variety of lineages. Here we have used a microwell culture system that produces 3-D colonies of uniform size and shape to provide insight into the effect of modulating cell-cell contact on canonical Wnt/?-catenin signaling in hESCs. Canonical Wnt signaling has been implicated in both self-renewal and differentiation of hESCs, and competition for ?-catenin between the Wnt pathway and cadherin-mediated cell-cell interactions impacts various developmental processes, including the epithelial-mesenchymal transition. Our results showed that hESCs cultured in 3-D microwells exhibited higher E-cadherin expression than cells on 2-D substrates. The increase in E-cadherin expression in microwells was accompanied by a downregulation of Wnt signaling, as evidenced by the lack of nuclear ?-catenin and downregulation of Wnt target genes. Despite this reduction in Wnt signaling in microwell cultures, embryoid bodies (EBs) formed from hESCs cultured in microwells exhibited higher levels of Wnt signaling than EBs from hESCs cultured on 2-D substrates. Furthermore, the Wnt-positive cells within EBs showed upregulation of genes associated with cardiogenesis. These results demonstrate that modulation of intercellular interactions impacts Wnt/?-catenin signaling in hESCs.

SUBMITTER: Azarin SM 

PROVIDER: S-EPMC3259207 | biostudies-literature | 2012 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modulation of Wnt/β-catenin signaling in human embryonic stem cells using a 3-D microwell array.

Azarin Samira M SM   Lian Xiaojun X   Larson Elise A EA   Popelka Heidi M HM   de Pablo Juan J JJ   Palecek Sean P SP  

Biomaterials 20111215 7


Intercellular interactions in the cell microenvironment play a critical role in determining cell fate, but the effects of these interactions on pathways governing human embryonic stem cell (hESC) behavior have not been fully elucidated. We and others have previously reported that 3-D culture of hESCs affects cell fates, including self-renewal and differentiation to a variety of lineages. Here we have used a microwell culture system that produces 3-D colonies of uniform size and shape to provide  ...[more]

Similar Datasets

| S-EPMC3135243 | biostudies-other
| S-EPMC3515512 | biostudies-literature
| S-EPMC2886114 | biostudies-literature
| S-EPMC1838514 | biostudies-literature
| S-EPMC5081574 | biostudies-literature
| S-EPMC3311359 | biostudies-literature
| S-EPMC3780328 | biostudies-literature
| S-EPMC3076310 | biostudies-literature
| S-EPMC6353868 | biostudies-literature
| S-EPMC2200802 | biostudies-other