Unknown

Dataset Information

0

Mechanism of gold(I)-catalyzed rearrangements of acetylenic amine-N-oxides: computational investigations lead to a new mechanism confirmed by experiment.


ABSTRACT: Quantum mechanical studies of the mechanism of gold-catalyzed rearrangements of acetylenic amine-N-oxides to piperidinones or azepanones have revealed a new mechanism involving a concerted heteroretroene reaction, formally a 1,5 hydrogen shift from the N-alkyl groups to the vinyl position of a gold-coordinated methyleneisoxazolidinium or methyleneoxazinanium. Density functional calculations (B3LYP, B3LYP-D3) on the heteroretroene mechanism reproduce experimental regioselectivities and provide an explanation as to why the hydrogen is transferred from the smaller amine substituent. In support of the proposed mechanism, new experimental investigations show that the hydrogen shift is concerted and that gold carbenes are not involved as reaction intermediates.

SUBMITTER: Noey EL 

PROVIDER: S-EPMC3262115 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mechanism of gold(I)-catalyzed rearrangements of acetylenic amine-N-oxides: computational investigations lead to a new mechanism confirmed by experiment.

Noey Elizabeth L EL   Luo Yingdong Y   Zhang Liming L   Houk K N KN  

Journal of the American Chemical Society 20111222 2


Quantum mechanical studies of the mechanism of gold-catalyzed rearrangements of acetylenic amine-N-oxides to piperidinones or azepanones have revealed a new mechanism involving a concerted heteroretroene reaction, formally a 1,5 hydrogen shift from the N-alkyl groups to the vinyl position of a gold-coordinated methyleneisoxazolidinium or methyleneoxazinanium. Density functional calculations (B3LYP, B3LYP-D3) on the heteroretroene mechanism reproduce experimental regioselectivities and provide an  ...[more]

Similar Datasets

| S-EPMC4557036 | biostudies-literature
| S-EPMC3184349 | biostudies-literature
| S-EPMC3962074 | biostudies-other
| S-EPMC2707777 | biostudies-other
| S-EPMC9083471 | biostudies-literature
| S-EPMC3463820 | biostudies-literature
| S-EPMC10120024 | biostudies-literature
| S-EPMC3632092 | biostudies-other
| S-EPMC7321150 | biostudies-literature
| S-EPMC8632916 | biostudies-literature