Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.
Ontology highlight
ABSTRACT: The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBP? and PPAR? independent of C/EBP? gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPAR? expression seems to stem from its ability to inhibit Akt and augment the TNF? pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPAR? expression in adipocytes. In our experiments, TNF? upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)?(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPAR?-regulated adipogenesis pathway at all stages and by augmenting TNF?-induced lipolysis and apoptosis in mature adipocytes.
SUBMITTER: Dave S
PROVIDER: S-EPMC3265525 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA