Unknown

Dataset Information

0

Central nervous system delivery of the antipsychotic olanzapine induces hepatic insulin resistance.


ABSTRACT:

Objective

Olanzapine (OLZ) is an atypical antipsychotic whose clinical efficacy is hampered by side effects including weight gain and diabetes. Recent evidence shows that OLZ alters insulin sensitivity independent of changes in body weight and composition. The present study addresses whether OLZ-induced insulin resistance is driven by its central actions.

Research design and methods

Sprague-Dawley rats received an intravenous (OLZ-IV group) or intracerebroventricular (OLZ-ICV group) infusion of OLZ or vehicle. Glucose kinetics were assessed before (basal period) and during euglycemic-hyperinsulinemic clamp studies.

Results

OLZ-IV caused a transient increase in glycemia and a higher rate of glucose appearance (R(a)) in the basal period. During the hyperinsulinemic clamp, the glucose infusion rate (GIR) required to maintain euglycemia and the rate of glucose utilization (R(d)) were decreased in OLZ-IV, whereas endogenous glucose production (EGP) rate was increased compared with vehicle-IV. Consistent with an elevation in EGP, the OLZ-IV group had higher hepatic mRNA levels for the enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Phosphorylation of hypothalamic AMP-activated protein kinase (AMPK) was increased in OLZ-IV rats compared with controls. Similarly, an intracerebroventricular infusion of OLZ resulted in a transient increase in glycemia as well as a higher R(a) in the basal period. During the hyperinsulinemic period, OLZ-ICV caused a decreased GIR, an increased EGP, but no change in R(d). Furthermore, OLZ-ICV rats had increased hepatic gluconeogenic enzymes and elevated hypothalamic neuropeptide-Y and agouti-related protein mRNA levels.

Conclusions

Acute central nervous system exposure to OLZ induces hypothalamic AMPK and hepatic insulin resistance, pointing to a hypothalamic site of action for the metabolic dysregulation of atypical antipsychotics.

SUBMITTER: Martins PJ 

PROVIDER: S-EPMC3279549 | biostudies-literature | 2010 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Central nervous system delivery of the antipsychotic olanzapine induces hepatic insulin resistance.

Martins Paulo J F PJ   Haas Michael M   Obici Silvana S  

Diabetes 20100803 10


<h4>Objective</h4>Olanzapine (OLZ) is an atypical antipsychotic whose clinical efficacy is hampered by side effects including weight gain and diabetes. Recent evidence shows that OLZ alters insulin sensitivity independent of changes in body weight and composition. The present study addresses whether OLZ-induced insulin resistance is driven by its central actions.<h4>Research design and methods</h4>Sprague-Dawley rats received an intravenous (OLZ-IV group) or intracerebroventricular (OLZ-ICV grou  ...[more]

Similar Datasets

| S-EPMC3419184 | biostudies-other
| S-EPMC6673286 | biostudies-literature
| S-EPMC8988043 | biostudies-literature
| S-EPMC1868785 | biostudies-literature
| S-EPMC4292043 | biostudies-literature
| S-EPMC3894720 | biostudies-other
| S-EPMC3679837 | biostudies-literature
| S-EPMC4507173 | biostudies-literature
| S-EPMC8950604 | biostudies-literature
| S-EPMC5156395 | biostudies-literature