Consecutive mutational events in a TSHR allele of Arab families with resistance to thyroid stimulating hormone.
Ontology highlight
ABSTRACT: Our laboratory identified six distinct inactivating TSHR gene mutations in Arab tribes living in Israel. We recently reported three nucleotide substitutions in exon 3 producing p.[L89L;Q90P] and one in exon 9 of the same allele producing p.P264S in Family A. Family B, reported herein, harbors the identical mutation in exon 3 only. We set to determine whether the mutations have common ancestral origin.Coding regions of the TSHR were sequenced and flanking microsatellite markers spanning 5.3 cM were used for haplotyping.Two siblings of Family B were compound heterozygous for TSHR gene mutations. The paternal allele contained the exon 3 mutation and the maternal allele harbored a mutation in exon 10 (p.L653V). We investigated the possibility of a founder effect with subsequent mutational events for the presence of the same exon 3 mutation in different families. The haplotype of the allele harboring the exon 3 mutation in Family B was identical to that of Family A, also harboring the exon 9 mutation on the same allele, indicating that the latter occurred subsequently. The ancestral wild-type TSHR was present in Family B, suggesting that the mutation in exon 3 was also new in the history of that population.It is more likely that two consecutive mutational events occurred on the ancestral wild-type allele instead of a recombination bringing exon 3 and exon 9 mutations together on the same allele. New mutational events contribute to the high prevalence of TSHR mutations in this population in addition to a founder effect and limited gene pool due to inbreeding.
SUBMITTER: Sriphrapradang C
PROVIDER: S-EPMC3286805 | biostudies-literature | 2012 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA