A latent variable partial least squares path modeling approach to regional association and polygenic effect with applications to a human obesity study.
Ontology highlight
ABSTRACT: Genetic association studies are now routinely used to identify single nucleotide polymorphisms (SNPs) linked with human diseases or traits through single SNP-single trait tests. Here we introduced partial least squares path modeling (PLSPM) for association between single or multiple SNPs and a latent trait that can involve single or multiple correlated measurement(s). Furthermore, the framework naturally provides estimators of polygenic effect by appropriately weighting trait-attributing alleles. We conducted computer simulations to assess the performance via multiple SNPs and human obesity-related traits as measured by body mass index (BMI), waist and hip circumferences. Our results showed that the associate statistics had type I error rates close to nominal level and were powerful for a range of effect and sample sizes. When applied to 12 candidate regions in data (N?=?2,417) from the European Prospective Investigation of Cancer (EPIC)-Norfolk study, a region in FTO was found to have stronger association (rs7204609?rs9939881 at the first intron P?=?4.29×10(-7)) than single SNP analysis (all with P>10(-4)) and a latent quantitative phenotype was obtained using a subset sample of EPIC-Norfolk (N?=?12,559). We believe our method is appropriate for assessment of regional association and polygenic effect on a single or multiple traits.
SUBMITTER: Xue F
PROVIDER: S-EPMC3288051 | biostudies-literature | 2012
REPOSITORIES: biostudies-literature
ACCESS DATA